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1. INTRODUCTION
This is the final report of the research and development program

on high~-performance cesium-vapor thermionic converters conducted by
Electro-Optical Systems, Inc., for the Jet Propulsion Laboratory under
Contract JPL 951225. The program period extended from 19 May 1965 to
19 July 1966,

The major objectives of the program were: (l) to provide a thorough,
definitive experimental and analytical research background on the con-

verter performance capabilities of selected electrode materials and

converter engineering design parameters and, (2) to demonstrate the

actual performance of practical operating converters designed on the
basis of the results of this study. To achieve this objective, the
program was organized in two major tasks, the first of which was
concerned primarily with the properties of the electrode materials
selected and experimental parametric investigations, and the second,
with converter design and subsidiary studies of converter fabrication
techniques.

Task I included the design and construction of precision variable
parameter test vehicles with which complete parametric investigations
of plane-parallel cesium-vapor converter performance characteristics

could be conducted over a wide range of converter parameters applicable
to practical converter design. These vehicles were capable of opera-
tion with emitter temperatures from 1300°K to 21OOOK, collector temper-
atures from 700°K to 13000K, and cesium reservoir temperatures from
400K to 750°K. The interelectrode spacings could be varied from less
than 9.0002 inch to over 0.015 inch and were accurately reproducible.
During this program, two such vehicles were fabricated and parametric

studies were made with two sets of electrode materials, namely rhenium

emitter/rhenium collector, and rhenium emitter/molybdenum collector.
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Prior to the use of these materials in the variable parameter test vehi-
cles, samples were subjected to processing experiments and were charac-
terized chemically and physically in both the as-received and processed
conditions.

Task II included the design, fabrication and test of high-performance

plane parallel converters as well as a number of experiments on fabrica-

tion technology. The aspects of converter design that were related to

operational parameters (emitter temperature, inter-electrode spacing,
etc.) were based directly on the data acquired in the Task I investiga-
tions. This provided the means for immediate and unambiguous correla-

tions between hardware performance and research results. The experiments
in fabrication technology included the formulation of reliable electron-
beam welding schedules, thermal cycling of active-alloy brazed metal-to-
ceramic seals, heat transfer experiments and thermal emittance measure-
ments for radiator design, and experiments with a thermal mock-up of a
thermionic converter to ascertain the influence of thermal loads on

interelectrode spacing.

Qutline of Program Accomplishments

Task I was highlighted by the outstanding results obtained on two

variable parameter test vehicles which operated for a combined period

of 1500 hours without failure. The test vehicles exceeded their design

goals in scope, precision and reliability. The prolonged period of
operation permitted extensive parametric testing which completely
covered the plasma modes of the converter and defined the potentialities
of cesium-vapor converters with the electrode materials utilized in
these tests. Precise measurements were made of output characteris-
tics for interelectrode spacings in the range from 0.0002 to over 0.010
inch for several settings of emitter, collector, and reservoir tempera-
tures and under optimized power output conditions as well as off-
optimum conditions. The interelectrode spacings were reproducible to
within 0.0001 inch, and the output performance was reproducible within
1 to 2 percent during the entire period of testing. The details of

these experiments are discussed in Section 2 of this report.

6952-Final 2




Four high-performance prototype converters were fabricated during
Task II and the performance goal of 20 watts/cm2 power output at 0.8
volts for an emitter temperature of 17350C (true) was achieved. The
interelectrode spacings of these converters were selected for specific
output characteristics from the data acquired from the parametric test
vehicles of Task I, A significant achievement of the program was the
exact correlation between the performances of the prototype converters
and the parametric vehicles. The prototype converters of Task II were
fabricated using a new fabrication method developed during the program,
wherein prefabricated subassemblies, including metal-ceramic seals, were
electron beam welded together to form the [inal converter assembly.
This modular approach is inherently highly reliable since the final step
in the converter assembly is a metal-to-metal joint rather than a seal
braze, The converters and their fabrication are discussed in Section 4.

The Task II investigations in fabrication technology are discussed

in detail in Section 3. Briefly, the results were:

1. An electron beam welding schedule was developed which permitted
a reliable weld between a solid rhenium emitter and rhenium
envelope. Two test vehicles and four thermionic converters
utilized this weld schedule without failure or reweld.

2, A seal testing program demonstrated that active brazed, metal-
to-ceramic seals can withstand hundreds of thermal cycles at
a cycle rate of 100°C/min. Morcover, it was established
that those seals could be prefabricated and then electron beam
welded to the converter structures.,

3. Heat transfer and heat rejection investigations were completed
which established that the emittance value of Rokide 'C" coatings
at 0,78 demonstrated a reliable molybdenum-copper radiator
heat rejection system, and permitted a collector design of

minimum thermal design for calculated thermal heat loads.
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A thermal mockup of thermionic converter together with a high-
resolution optical system permitted direct measurements of
interelectrode spacings. The mockup was operated at con-

verter operating conditions. The spacing measurements agreed




2. ELECTRODE MATERIALS INVESTIGATION

2.1 Emitter Processing and Stabilizing Schedule

The objective of this study was the generation of a proc-
essing schedule for the materials selected as electrodes in the var-
iable parameter vehicle or high performance converters. The process
schedule includes a detailed chemical cleaning treatment and vacuum
outgassing procedure for achieving uncontaminated, stable electrode
surfaces.

The emitting electrode in a high-performance thermionic
converter operates at a temperature of 2000°K which will result in
excessive grain growth and unstable emission if the emitter surface
has not been previously heat-treated sufficiently to establish a
stable grain structure. The core of the problem, therefore, is to
determine a surface finishing and vacuum outgassing schedule that will
not only remove gaseous and high vapor pressure elements but will also
set the grain structure of the emitter such that subsequent operation
for an extended length of time (i.e., much greater than 100 hours) at
2 temperature of 2000°K will not effect changes in the emitter surface
structure.

The materials selected for this process study were Rembar
high-purity, plate-stock rhenium and NRC high-purity, rod-stock tanta-
lum. The following paragraphs discuss the analyses of the stock in
the "as received" condition, the sample preparation, vacuum outgassing
schedules, and results of the surface stability.

As a starting point for the processing study, a detailed
mill history for each material was requested from the supplier. Upon
receipt of each material, a spectrographic analysis was performed by

the Materials Testing Laboratory (MTL), a division of the Magnaflux
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Corporation, to provide a comparison with the supplier's certification
of purity (Tables 2-IA and 2-IIA). Tables 2-IB and 2-IIB present the
data obtained from the MTL tests.

The analyses differ significantly on the type and amount of
impurities present in each sample. The differences are due to the
conditions of testing, such as electrode sclection and chawber cleanli-
ness, as well as the interpretation of the spectra; the latter may
account for impurity values that were optimistically reported in the

range from 1 to 10 ppm.

2.1.1 Tantalum Emitter Schedule

2.1.1.1 Surface Finish and Chemical Cleaning

Three bar-stock tantalum disks of 0.800-
inch diameter and 0.200-inch thickness were machined to achieve a
tolerance of 0.0001-inch flatness and 0.000l-inch perpendicularity
without the use of oil lubricants. Such tolerances are required in
the variable parameter vehicle study for accurate measurements of
thermionic power output at 0.0005-inch interelectrode spacings. The
actual machined tolerances were: flatness to within 30 millionths of
an inch and perpendicularity or ''squareness' to within 19 millionths
of an inch, both as measured by the EOS Quality Assurance Laboratory
with a Pratt & Whitney electronic micrometer capable of determining
accuracy to 10 millionths of an inch. A profilometer reading indi-
cated that the surface smoothness on the sample surfaces ranged from
20 to less than 16 microinches.

The samples were chemically cleaned in
accordance with the procedure described in Appendix A and were stored

in evacuated containers until required for vacuum outgassing.

2.1.1.2 Vacuum OQutgassing Schedule for Tantalum

The tantalum emitters which were machined
and chemically cleaned as described in the previous paragraphs were

mounted in refractory metal firing stands for electron bombardment
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TABLE 2-IA

NRC REPORT ON ANALYSIS OF HIGH-PURITY TANTALUM BAR STOCK

Tantalum
Chromium
Copper
Iron
Molybdenum
Tungsten
Aluminum
Columbium

Total other elements

* Less than

Remainder (99.87 percent)
C.C0C1 percent¥
0.0001 percent¥*
0.0005 percent

(0.0048 percent

0.01 percent

NN — e e
UUVL peETCEnL

O

0.0095 percent
0.106 percent*

TABLE 2-1IB

MATERIALS TESTING LABORATORY REPORT
ON SPECTROGRAPHIC ANALYSIS (SEMIQUANTITATIVE)
OF HIGH-PURITY TANTALUM BAR STOCK

Tantalum
Chromium
Copper
Iron
Molybdenum
Tungsten
Aluminum
Calcium
Columbium

Total other elements

* Less than

6952-Final

Remainder (99.62 percent)
0.003 percent

0.001 percent

C.Cl percent

C.Cl percent

0.10 percent®

0.0001 percent

C.CC1l percent

C.10 percent®

0.15 percent



TABLE 2-1IA

REMBAR REPORT ON ANALYSIS OF HIGH-PURITY RHENIUM PLATE STOCK

Rhenium
Aluminum
Nickel
Copper
Gold
Manganese
Silicon

Total other elements

Remainder (99.99 percent)
0.0001 percent

.0001 percent
percent

.0001 percent

c o O O
o
o
Eag
N

.0001 percent

Not detected

TABLE 2-1IB

MATERIALS TESTING LABORATORY REPORT
ON SPECTROGRAPHIC ANALYSIS (SEMIQUANTITATIVE)
OF HIGH-PURITY RHENIUM PLATE STOCK

Rhenium
Aluminum
Calcium
Titanium
Molybdenum
Magnesium
Chromium
Silicon

Others
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Remainder (99.96 percent)
.002 percent

.005 percent

.002 percent

.Cl percent

.003 percent

.01 percent

o O O O O O O

.007 percent

Not detected




heating in a vac-ion pumped vacuum environment. The tantalum firing
stands were fitted with high-purity, vacuum-fired tantalum tubes that
supported the samples. Tantalum was purposely selected as the support
material to prevent the formation of eﬁtectics or the diffusion of a
dissimilar metal support into the tantalum sample during the high-
temperature firing operation.

As a starting point for this investigation,
an outgassing schedule of 2100°C for 2 hours was selected for the first
emitter sample. A second sample was outgassed at 22500C for 2 hours
and a third sample, at 2450°C for 2 hours. All temperature measurements
were made by viewing a 10:1 hohlraum with a calibrated micro-optical
pyrometer. The sample surfaces were subsequently examined on a Zeiss
metallograph. Selected grains were marked by a microhardness tester
and photographed without metallographic preparation such as etching
or polishing. The samples were returned for 100-hoﬁr operation at

0
1735 Cc, the specified emitter temperature for the program performance

goals.

2.1.1.3 Surface Stability Examination of Vacuum
Outgassed Tantalum

Figures 2-la and 2-2a are photographs of
samples outgassed at 2100°C and 2250°C, respectively, and then operated
at 1735°C for 100 hours (Figs. 2-1b and 2-2b). The grooves that appear
in the photographs of the sample surface are machining marks. The
samples were not lapped or polished since tantalum becomes contaminated
with embedded particles from lapping and polishing operations. On both
sets of photographs, there is ample evidence of grain boundary move-
ment, which indicates that the processing schedule was not sufficient
to produce a stable electrode surface. However, the third emitter
sample which was outgassed at 2450°C for 2 hours and then operated at
1735°C for 100 hours displayed little or no grain boundary movement,
as shown in Figs. 2-3a and 2-3b., Therefore, the recommended minimum
outgassing schedule for tantalum emitters operating near ZOOOOK is
2450°C for 2 hours.
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FIG. 2-2a TANTALUM EMITTER VACUUM-FIRED AT 2250°C
FOR 2 HOURS IN A VAC-ION PUMPED EN-
VIRONMENT OF 4 x 10~/ TORR (X50)
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FIG. 2-2b SAME EMITTER AFTER OPERATION AT 1735°C
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VIRONMENT OF 5 x 10~8 TORR (X50)
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2.1.2 Rhenium Emitter Schedule

2.1.2.1 Surface Finish and Chemical Cleaning

Three plate-stock rhenium disks of C.800-inch
diameter and (.200-inch chickness were ground to achieve flatness and
perpendicularity to 0.0001l-inch tolerances. Measured tolerances on
an electronic micrometer were less than 1C millionths of an inch, the
limit of the measuring instrument. The grinding operation, performed
with fine-grit diamond wheels, was followed by diamond-dust lapping
and polishing to achieve final surface smoothness. Profilometer read-
ings indicated a surface smoothness of less than 10 microinches.

Grinding and polishing are acceptable tech-
niques for working rhenium, since the material is not amenable to
standard machining practices of facing and turning. Rhenium work-
hardens so easily that neither fully treated tool steel nor cemented
tungsten carbide is capable of taking accurate cuts of the material.
In addition, rhenium does not pick up polishing or lapping compounds
as does tantalum; hence, it remains free of imbedded contaminants.
Pyrometer sight holes having 10:1 depth-to-diameter ratios were electric-

discharge machined in ethyl alcohol.

The samples were chemically cleaned in accord-
ance with the procedure for cleaning tantalum as described in Appendix A

with the exception that the hot chromic acid dip was limited to 4 seconds
duration.

2.1.2.2 Vacuum Qutgassing Schedule for Rhenium

The rhenium emitter samples, which were pre-
pared as described in the previous paragraphs, were mounted in refrac-
tory metal firing stands for electron bombardment heating in a vac-ion
pumped environment. The firing stands are fitted with high-purity,

vacuum-fired rhenium legs which support the samples.

An outgassing schedule of 2450°C for 24 hours

was selected for the first sample. The second sample was outgassed at
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2450°C for 10 hours and the third sample, at 2450°%C for 3 hours. All
temperature measurements were made by viewing the 1C:1 hohlraum with
a calibrated micro-optical pyrometer. The sample surfaces were sub-
sequently examined on a Zeiss metallograph. Selected grains were
marked by a microhardness tester and photographed without metallo-

graphic preparation, as in the case of tantalum. The samples were

returned for 1C0-hour operation at 1735°C and reexamined on the

metallograph.

2.1.2.3 Surface Stability Examination of Rhenium

The reexamined surfaces, shown in Figs. 2-4b
and 2-5b, indicate no surface structure changes with the possible ex-
ception of some thermal etching at grain boundaries. There appears to
be no significant movemant of grain boundaries as a result of the 10C-
hour operation. The fiducial marks which stressed the surface in the
immediate neighborhood of the marks show expected signs of stress re-
lief. Note their different appearance in the 'before' and "after"
photographs. The last rhenium sample, fired at 245000 for 3 hours,
also displayed no grain boundary movement after the 100-hour operation
at 17350C and consequently is recommended as the rhenium emitter out-

gassing schedule.

2.2 Variable Parameter Test Vehicle

A variable parameter test vehicle was designed for the wide
range of operation necessary to characterize electrode material per-
formance for application to thermionic energy conversion. Specifically,
the test vehicle was designed to meet the following work statement de-
sign criteria:

1. Interelectrode spacing to vary from 0.0005 to 0.010 inch
separation.

2. Emitter to operate over the temperature range from 13OOOK to
2100°K; collector to operate from 700°K to 1300°K; cesium

o )
reservoir to operate from 400 K to 7507K.
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FIG. 2-4a RHEN%UM PROCESS SAMPLE VACUUM-FIRED AT
2450°C FOR 24 HOURS IN A VAC-ION PUMPED
ATMOSPHERE OF 3 x 10~/ TORR (X200)

FIG. 2-4b SAME SAMPLE AFTER 100-HOUR OPERATION AT
1735°C IN A VAC-ION PUMPED ATMOSPHERE OF
4 x 1078 TORR (X200)
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FIG. 2-5a RHENIUM PROCESS SAMPLE VACUUM-FIRED AT
2450°C FOR 10 HOURS IN A VAC-ION PUMPED
ATMOSPHERE OF 3 x 10~/ TORR (X200)

FIG. 2-5b SAME SAMPLE AFTER 100-HOUR OPERATION AT
1735°C IN A VAC-ION PUMPED ATMOSPHERE OF
4 x 10-8 TORR (X200)
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3. A guard ring assembly which follows the potential and tem-
perature profile of the collector.
4. Steady-state operation with output current densities of 200

amperes/cm

The test vehicle was also designed to be capable of obtaining
both cesiated and vacuum electron emission measurements from the emitter
and cesiated electron emission from the collector for minimum work
function determination. In addition, the design permitted power output
measurements, as a function of interelectrode spacing and element tem-
peratures which could be compared directliy to converter resuits.

In retrospect, the variable parameter test vehicle exceeded
all its design objectives and demonstrated that: (1) it is a superb
research instrument capable of sufficient precision and control for
fundamental thermionic measurements; and (2) it is a hardware-type de-
vice with a projected lifetime of 10,000 hours of reproducible perform-

ance obtained by direct measurement of power output and emitter tem-
perature.

2.2.1 Variable Parameter Test Vehicle Design

Before a detailed design and thermal analysis of a
variable parameter test vehicle could begin, a basic decision concern-
ing temperature measurement was required. A design which allowed the
accurate determination of emitter (cathode) temperatures had to be
selected. Due to the high-temperature instability of thermocouple
measurements during long term operation (a result of material diffusion
at the bimetal junction), a pyrometer method of measurement, utilizing
a 10:1 blackbody hole was chosen. Since the largest contribution to
measurement inaccuracy in this method is extraneous radiation, a de-
vice geometry was selected which allowed an unobstructed view of the
blackbody hole by a micro-optical pyrometer. This geometry is identical
to the plane-parallel converter wherein the blackbody hole is located

in the circumference of the emitter and at right angles to the bom-

bardment heater.
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Based on these considerations, the design geometry

utilizes a concentric guard ring and a collector barrel with exposed

emitter. Figure 2-6 shows the geometry of the vehicle. An added

benefit of this design is the elimination of a "parasitic' cesium

reservoir which occurs when a location within the device approaches

the reservoir temperature. By keeping the vehicle compact, with the

bellows, seals, and guard ring concentric to the collector barrel,

the device proper will operate at least 150°C higher than the reservoir.
The length of the collector barrel is determined by

both heat transfer considerations and, mechanically, the fact that it

must be coaxial with a guard ring of a particular length. The length

of the guard ring is mainly set by the mechanical limitations which

are introduced by the requirement that the guard ring-collector must

move with respect to the emitter and emitter envelope.

2.2.1.1 Variable Parameter Test Vehicle Thermal
Analysis

A primary consideration in the thermal

design of the emission vehicle was to provide equal temperature distri-
butions (zero contact potential) along the guard ring and collector
barrel and, at the same time, minimize the collector barrel length to

reduce AT in the collector barrel at high heat fluxes.

To determine whether the guard ring and col-
lector have equal or nearly equal thermal gradients and hence zero
contact potential difference since they are fabricated of the same
material, consider the following derivation. The heat conducted down
the collector barrel is

=k A
Qcoll coll <coll 5=

¥
L

; (2-1)
i coll

x

where QColl is the heat flux conducted down the collector, kcoll is

the thermal conductivity of the collector material, AColl
. dT | .
sectional area of the conducting path, and E% coll is the thermal

is the cross-
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gradient down its length. The heat conducted down the guard ring is

given by

Q _ =k &

g.r. g.r. g.r. dx (2-2)

g.r.
where the quantities in Eq. 2-2 are the same as in Eq. 2-1 except that
they apply to the guard ring structure. Now, the heat flux input to

the collector barrel is

Qor1 = 7 %cor1 Aeoll (2-3)
and the heat flux input to the guard ring is
Qg.r. =J ¢g.r. Ag.r. (2-4)
where J is the electron current density emitted by the emitter
(cathode), ®c011 and ¢8 . are the effective thermal work functions of
the collector and guard ring, and A and A are the collector
coll g-T.

areas for the collector and guard ring, respectively. The effective
thermal work function for heat transfer purposes is dependent upon the
apparent surface work function ¢C (as determined from emission data),
the plasma electron energy (Eplasma = hkTplasma/ne), and the energy
gained (or lost) at the accelerating (or retarding) sheath at the
collector or guard ring surface. In the condition where the collector
is matched to the plasma, there is no sheath at the anode surface and,
for heat transfer purposes,

e kT

—_—P
= +
¢effth ac e * Vs

where 1.3 < ¢ < 1.5 depending on the plasma electron energy distribu-
tion. Appendix B contains a detailed discussion of the origin and

nature of the plasma potential term.
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It is apparent from the foregoing discussion
that a heat transfer analysis cannot be valid without consideration of
plasma conditions within the interelectrode space. The effect of
these plasma conditions on the thermal power input can be demonstrated
by considering the case of a matched plasma at the collector (anode)
(i.e., no collector sheath), a plasma electron temperature of 6000°K
(a probable maximum condition), and an apparent minimum work function

for cesiated molybdenum of 1.55 eV (Reference 1). 1In this case,

= 4kT = 0. . i = 2.
v plasma/ne 0.66 eV. This results in ¢effth 2.21 eV (for
heat transfer purposes), which is a correction of 40 percent to the
thermal power input to the collector or guard ring over apparent work

function considerations.
Returning to the derivation, since the guard

ring and collector are of the same material, the conductivities and
work functions are identical, if equal temperatures are assumed. In
addition, due to the noncontoured geometry, the collecting area is the
same as the cross-sectional area of the conducting path. Therefore,

substitution of Eqs. 2-3 and 2-4 into Eqs. 2-1 and 2-2 yields

dT dT
J¢ = k o IV = — (2-5)
coll coll dx coll g.r. g.r. dx g.r.
and, since the collector and guard ring are identical,
k 4aT l daT
coll dx coll g.r. dx s
(2-6)

a1 | = 4 i
dx coll dx g.Tr.

Thus, the temperature gradients are identical down the guard ring and
collector, resulting in equivalent temperature distribution. This

produces equal cesiated work functions and thus a zero contact poten-

tial difference.
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The method chosen for heat rejection from

the collector is the mechanical attachment of a copper, water- or air-

cooled heat sink. The heat sink consists of l-inch copper straps,

1/8-inch thick, which are connected to copper bus bars by flexible

copper straps. The bus bars have been fitted with copper tubing which

can be used for air or water cooling to accomplish a variable thermal

conduction. An experiment was conducted to determine the heat

transfer characteristics of such a mechanically clamped collector-

radiator combination. Figure 2-7 shows the experimental arrangement

and the position of thermocouples. Table 2-II1 summarizes the results

of a heat transfer experiment on this combination.

TABLE 2-III

BOLTED COLLECTOR RADIATOR HEAT TRANSFER EXPERIMENT
FOR VARIABLE PARAMETER EMISSION TEST VEHICLE

Constant Electrical Power Input to Gun: apgrox. 350 watts
Collector Surface Temperature: approx. 900°C

Collector Bage Power Conducted Type of Auxiliary
Temperature (C) Out lead Strap (watts) Cooling
617 158.3 Flexible leads
608 239.2

Flexible leads with
air cooling, 20 psi
alr pressure

603 245.6 Flexible leads with
Hy0 cooling, flow
rate of 1 liter/min

593 265.3 Flexible leads with
Hy0 cooling, flow
rate of 2 liters/min

The difference between power conducted out
lead straps and electrical power input to gun is the power radiated by
the gun and the collector. As can be seen from Table 2-1I1I, over 100

watts of additional power can be conducted out the collector radiator
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straps by varying the means of cooling. This results in a 25°C varia-
tion of the collector root temperature, which is the more significant
result. In addition to controlling the collector root temperature by
cooling, heaters have been added to the radiator straps for maintain-
ing the collector temperature at desirable levels at low currents. To
determine the collector ‘root temperature as a function of heater
power, consider the idealized system shown in Fig. 2-8. In the illus-
tration, Q 1s the thermal power into the collector, (1/2) Q is the
thermal power out each radiator strap assuming no radiation losses, q

is the heater power into each radiator strap, T, is the collector top

T
temperature, Tr is the collector root temperature, and Ts is the col-

lector radiator strap temperature. Now,
klAl (TT -T.)

R S e (2-7)

and

kA, (T -T.)
(1/2)Q - q = 22— (2-8)

where kl’ kz, Al

areas of the collector and radiator strap, respectively. Combining

, and A2 are the conductivities and cross-sectional

Eqs. 2-7 and 2-8 and solving the Tr yields:

k_A 2k_A
171 22 -
( L ) TT + ( ) Ta 2q

1
r klA1 2 )

— e —-

L 1

(2-9)

Equation 2-9 is used to determine the heater
power necessary to control the collector temperatures. If a collector
surface temperature of 700°C 1is desired, the required heater power can
be calculated. In addition to T, = 700°¢, it will be assumed that
’1‘r = 500°C and '1’8 = 450°C. Thus, Eq. 2-9 yields q = 70 watts for the

geometry of the designed collector radiator.
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Figure 2-9 shows the variation of collector
surface temperature with collector current density. The curve was
calculated assuming a constant collector root temperature of 450°C.
The significance of Fig. 2~9 lies in the result that steady-state
optimized power measurements will be limited to currents less than 125
amperes/cmz. This is due to EOS' experience that minimum collector
work functions cannot be achieved for collector temperatures in excess
of 90000. This result does not place a limitation on emission measure-
ments at much higher current densities than 125 amperes/cmz. When
optimized power output is of no interest, the allowable collector
surface temperature is limited only by structural considerations;
therefore, currents of 200 amperes/cm2 can be easily measured.

The last item to receive thermal design
analysis was the emitter support structure which is normally referred

to as an envelope. This envelope is coaxial with the guard ring and
collector and provides the electrical connection between the emitter
and emitter lead straps. The envelope is a criticallmember of the
vehicle and accomplishes three important tasks: (1) It must act as an
effective heat choke, thermally isolating an emitter which may operate
at temperatures in excess of 1800°C from structural members of the
device, such as seals, which should not exceed temperatures of 800°C
to 9000C; (2) it must carry currents in excess of 400 amperes without
a large voltage drop over the length of the envelope; and (3) it must
maintain ultra-high vacuum and mechanical integrity.

The "optimum' heat choke design requires
balancing of the electrical losses with the thermal losses. From the
following equation, a practical L/A ratio must be obtained that mini-
mizes ¢, the ratio of electrical loss to thermal loss.

2 L
P A

1
a = >
A\ 1.2 (L)
K AT (L) -2 P4

(2-10)
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where I is the total current (in amperes) passing through the heat
choke, p is the resistivity of the material, L is the length of the
heat choke, A is the cross-sectional area of the heat choke wall, K is

the thermal conductivity of the material, and AT is the temperature

drop across the heat choke. The terms in the denominator of Eq. 2-10

are the thermal losses in the envelope. This consists of heat conduc-

tion (the first term) and half the joule heating (the second term) due

to the possibility of joule losses flowing out either end of the
envelope.

Heat choke envelopes of two different mate-

rials were designed: one of rhenium for rhenium emitters, and one of

tantalum for tantalum emitters. The reason for selecting identical

envelope and emitter materials is discussed in Section 4. The design

procedure is to determine practical values of L and A and evaluate AT

from Eq. 2-10 as a function of the parameter ¢. Table 2-IV summarizes

the results based on this approach. Heat conduction, K, is evaluated

o
for an average temperature of 1000 C.

TABLE 2-1IV
HEAT CHOKE ENVELOPE DESIGN PARAMETERS

Rhenium Tantalum

L 0.200 inch 0.150 inch

t 0.005 inch (wall) 0.003 inch (wall)
I 250 amperes 250 amperes

p 80 x 10°° q-cm 60 x 10°° q-cm

K 0.48 watt/cm-OC 0.67 watt/cm-oC
AT 1165 ¢C 1005°¢C

o 0.48 0.48
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From the values shown in the table, the
thermal power conducted down the rhenium heat choke is 86 watts, the
joule heating power generated in the heat choke is 33 watts, and the
power radiated by the envelope is 9 watts. Therefore, the total power
lost by the emitter down the rhenium envelope is 62 watts for an
emitter temperature of 1700°C and an emitter current of 250 amperes.
For tantalum, the thermal power conducted down the heat choke is 80
watts, the joule.heating power generated in the envelope is 31 watts,
and the radiated power is 1l watts. Then the total power drained from
the emitter by a tantalum heat choke envelope is 60 watts for an

emitter temperature of 1700°C and an emitter current of 250 amperes.

2.2.1.2 Interelectrode Potential Distribution and
Analysis
Utilizing a teledeltos analog field plotter,

the interelectrode electrostatic potential distribution was obtained

for an equivalent interelectrode spacing of 5 mils for three cases:

(1) the guard ring at the same potential as the collector; (2) the

guard ring at a potential intermediate between those of the collector

and emitter; and (3) the collector at a potential between those of the
guard ring and emitter. For the first case, the penetration potential

in the collector-guard ring gap is reduced to 1 percent of the collector-
emitter potential in one gap width. This situation is shown in Fig. 2-~10.
In addition, the shifts in the potential distribution as the guard

ring potential varies are evident.

There are two major conclusions to be drawn
from these distributions: (1) the potential distribution in the inter-
electrode area between emitter and collector is insensitive to guard
ring potential; and (2) the maximum error in the emission area deter-
mination is less than 2 percent. These conclusions result from observ-
ing that with deviations of the guard ring potential as large as £10
percent, the potential distribution perturbations within the interelec-

trode space due to guard ring potential variations are completely
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suppressed in a distance only 0.002 inch from the edge of the collec-
tor surface. The estimate of emission area error is based on the
symmetry of the potential lines. The line of electrostatic potential
symmetry bisects the guard ring-collector gap. The drift electrons in
the interelectrode spacing have thermal energies of only approximately
0.5 volts. If the energies of the drift electrons are comparable to
or less than the potential drop of the spacing, the electron trajec-
tories are essentially perpendicular to the potential lines. If the
electron energies are much greater than the total potential drop in
the gap, they are free to travel at large angles to the potential
lines. In the case of a thermionic converter, approximately the total
potential drop is across the sheath at the.cathode, since the inter-
electrode spacing is predominantly a very weak field region. In this
case, though, the drift electrons enter the emitter sheath from the
emitter (cathode) with energies of only 2kT and, with the very steep
potential gradient in the sheath, they are easily forced into a tra-
jectory of normal incidence. Therefore, it seems apparent that the
farthest point from the collector (anode) from which electrons can
originate and be collected by the collector is the point on the
emitter opposite the midpoint of the collector-guard ring spacing.
This point has been marked in Fig. 2-10. Using this point for measur-
ing the emitting area results in a maximum effective emitter area of
2.04 cm2, an error of 2 percent in the desired emitter area of 2.00
cmz.

These potential plots were made for the
vacuum case. In a plasma-filled environment with a cathode sheath,
the sheath acts as a virtual cathode and the potential distribution in
the plasma column is still represented by the indicated teledeltos
plots.

A final comment concerning the potential
distribution in the interelectrode spacing is that the lines of elec-

tric field between the emitter and collector/guard ring will be normal
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to these surfaces if their current densities or lines of flux per
square centimeter are equal. A dc driving source is normally applied
to the guard ring to maintain an equal current density with the collec-
tor for varying load conditions, and therefore the E-field is normal

to all the electrode surfaces.

2.2.2 Variable Parameter Test Vehicle Fabrication and
Assembly Procedure

The variable parameter vehicle utilizes a prefabri-
cated approach wherein as many subassemblies as possible are preassem-
bled before being joined into the test vehicle final configuration.
Figure 2-11 is a layout of the components and subassemblies of the
test vehicle. The key to the fabrication of the test vehicle was the
development of a single-convolution, refractory-metal bellows formed
by the welding of niobium flanges to prefabricated niobium-alumina
seal subassemblies. The advantage of this method is the use of a
high-purity, high-temperature bellows assembly which does not compro-
mise the design objectives with ferrous alloys exposed to a device
interior of high pressure cesium vapor. A bellows subassembly was
fabricated and measured to have an excursion greater than 0.040 inch
without failure, more than sufficient to satisfy the work statement
design goals. The same assembly was then cycled 3500 times at a 0.025
inch displacement, leak-checked, found leak-tight, and cycled to
destruction, which occurred at 8000 cycles. Since this testing was
performed at room temperature, the bellows assembly did not receive
the benefit of stress-relief which it would when operating in the
vehicle at temperatures near 600°cC. Equally important to the bellows
development was the EOS high-temperature, high-strength, ceramic-metal
seal which was prefabricated from high-purity niobium (99.9%) and
unmetallized high-purity ceramics (AL 995 WESGO) per the EOS active
sealing process discussed in Section 3. The critical juncture in the
test vehicle fabrication is the heli-arc welding of these seal sub-

assemblies to mating parts of the emitter and collector subassemblies.
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FIG. 2-11 VPTV COMPONENTS AND SUBASSEMBLIES PRIOR TO FINAL JOINING
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However, heli-arc welded joints are inherently more reliable to make
on one-of-a-kind devices, than seal brazing a three-electrode system,
particularly if sealing is the final assembly step.

A rhenium emitter/rhenium collector electrode system
was selected as the first set of materials for investigation in the
test vehicle. The choice of a rhenium emitter automatically selected
rhenium as the envelope material. This point is discussed in more

detail in Section 3, but briefly the argument for a rhenium emitter/

rhenium envelope is as follows: First, since the envelope and emitter

are pierce-welded on an electron beam welder, both parts are brought

to the melting point in a localized area. Rhenium forms brittle inter-
metallic compounds and alloys with almost évery common high-temperature
material candidate, especially at the melting point. The easiest solu-
tion is to also make the envelope out of rhenium. Second, even if the
material or materials were found to circumvent this problem, the high
temperature (2000°K) and long-time requirements for reliable operation
most surely lead to diffusion of such dissimilar materials. For
example, it has been E0S's experience that the tantalum-rhenium system
leads to surface contamination and work function changes within 200
hours at temperatures near 2000°K.

The test vehicle is comprised of four major subassem-
blies: the emitter plate subassembly, the guard ring subassembly, the
collector subassembly, and the ceramic-metal seal subassemblies.

The emitter plate subassembly, which consists of the
molybdenum emitter plate and rhenium envelope, was titanium brazed at
1700°C, although backup assemblies were brazed with vanadium at
19000C. Both brazes were structurally sound and leak-tight; however,
the vanadium braze is probably more reliable since there are no phase
transitions to contend with as there are in titanium.

The guard ring subassembly fabrication procedure
consisted of brazing the molybdenum gﬁard ring barrel to the molybde-

num guard ring support plate and joining two niobium bellows flanges
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to the top and bottom of the plate. All of these joints were brazed
simultaneously using a titanium braze.

The collector subassembly is comprised of a 0.040-
inch rhenium shim brazed to the surface of the molybdenum collector,
a8 niobium collector flange, and the cesium reservoir tubulation
made from tantalum. The rhenium shim was vanadium-brazed to the
molybdenum collector. After the braze, the collector and shim were
machined to the finish dinemsions. The niobium flange and tantalum
reservoir were then titanium-brazed to the collector. After the
titanium braze, the rhenium collector surface was surface~-ground to
remove any condensed brazing material. Finally, sheathed thermo-
couples were inserted into the collector barrel with thin (0.001 inch)
copper foil wrapped around the end of the thermocouple. The collector
was raised to a temperature of 1100°C to effect a copper braze. The
collector surface was lapped, cleaned, and vacuum-fired at 800°c for
20 hours to remove any trace impurities.

Upon completion of these subassemblies and the seals,
the final assembly proceeded wherein all items are re-leak-checked on
as5x 10-10 cc-atm/sec sensitive mass spectrometer leak detector and
stacked for final joining at the periphery of the flanges and seals.
During stacking, three specially machined screws are used primarily to
position the guard ring with respect to the collector, hence insuring
a concentrically preset spacing of 0.005 inch. The location of the
screws is shown in Section A-A of Fig. 2-12. -The secondary purpose of
the screws is to mechanically fasten the guard ring and collector at a
common reference plane so that thermal expansion of both members will
be identical during operation of the vehicle. Electrical isolation is
provided by ceramic sleeve inserts. During operation it was observed
that external holding fixtures served equally well to contain the
guard ring plate and hence, the guard ring itself. The second variable
parameter test vehicle, discussed in succeeding paragraphs, employed

internal tie-down by way of screw attachment in a different location,
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namely, the guard ring plate to the collector root which would be at
right angles to section A-A. At any rate, throughout the operation of
both test vehicles, the collector surface remained at least 0.0003
inch above the guard ring surface, a condition preset during final
assembly to allow the interelectrode spacing to be measured only between
emitter and collector.

After the bellow seals were welded, the structure was
mounted in a jig which expands the bellows by 0.005 to 0.008 inch,
and the rhenium emitter, which was preprocessed in accordance with the
schedule developed in Subsection 2.1, is inserted into the rhenium
envelope and electron beam welded into place. The weld is a pierce-
type joint requiring no burn-off lips or other projections for effect-
ing the weldment. The emitter is purposely allowed to be in contact
with the collector surface (with bellows expanded) to achieve a con-
trolled shorting at the emitter-collector operating temperatures. If
the bellows were not preexpanded, it would be necessary to effect the
bellows action in the ceramic-metal seal alone to achieve the condition

of a controlled short, since there ig always an inherent thermal ex-

"pansion in the envelope of 0.003 to 0.005 inch.

The final process procedure for the test vehicle is ter-
minal exhaust on a vac-ion pump accompanied by a 12 to 14 hour bake-out
at 6OOOC seal temperature, 900°C collector temperature, and 1700°C-1800°C
emitter temperature. The vehicle is then pinched off and loaded with

cesium. Over 20 sets of thermocouples are attached to the vehicle for

precision temperature measurement, and the vehicle is then mounted for test.

2.2.3 Variable Parameter Test Vehicle Drive Mechanism

The interelectrode spacing of the variable parameter
test vehicle is varied by applying force to three spring-loaded rods
which are inserted from the bell jar top plate. These rods apply
pressure to the emitter plate seen in Fig. 2-13. The individual rods
are controlled by a differential thread drive to allow independent

movement of each rod. One complete rotation of the control nut on the
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individual rods results in a vertical displacement of 0.002 inch. The
three rods can be ganged for uniform motion controlled by a single
drive. One complete rotation of the main control knob results in a
uniform displacement of 0.0008 inch by the ganged rods. The return
movement is obtained by spring-loaded ceramic rods mounted beneath the
emitter plate. These rods maintain a continuous upward force on the
bellows section of the vehicle. The spacing measurement device is
also mounted beneath the emitter plate. The measuring device is sup-
ported from a second ceramic rod while measuring the movement of the
ceramic return rod. This temperature compensating method allows the
measuring device to indicate only true mechanical movement of the
emitter with respect to the collector, and not the thermal expansion in
the support and return rods. The measuring device is a 0.0001-inch
dial-gage depth indicator which may be read to within 0.00005 inch.

In practice, the 0.0001-inch indicators must be re-
placed after 400 to 600 hours of operation, since their internal mov-
ing parts will not permit smooth tracking for longer periods. It
should be pointed out that the gages will still register accurate dis-
placements, but the needle movement of the individual indicators track
discontinuously, creating more nuisance than error.

Inconel X was selected for the spring material used
throughout the drive mechanism, and has performed satisfactorily at
nominal temperatures of 150 to 200°C for over 1100 hours of continuous
loading. The other structural materials of the drive mechanism are
Type 304 stainless steel and sulfur-free nickel. The alumina rods
were selected to provide electrical isolation between the drive mech-
anism and test vehicle; in addition, they conducted only minimal

heat away from the emitter plate.

2.2.4 Variable Parameter Test Vehicle Mounting Fixture

Figure 2-14 illustrates the support or mounting fix-
ture used to secure the test vehicle for operation. The basic struc-

ture consists of three parallel stainless steel rings separated by
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stainless steel rods. The bottom ring mates with the inside edge of
the vacuum test station base plate. The middle ring, actually a disk,
supports the return drive mechanism and the test vehicle support fix-
ture. This disk is covered by 10 sheets of 0.002-inch-thick dimpled
molybdenum heat shields to limit the temperature of the dial indicators
as well as the disk itself, since the disk serves to support the test
vehicle. Two molybdenum brackets are bolted to the collector root and
terminate on insulated base straps, as shown in the figure. The bolts
are made of Inconel-X and contain hand-polished shanks which mate to
the insides of collector mounting holes. The bolts are torqued in
place at a value of 95 ft-1b to insure even and firm attachment of

the test vehicle.

The electron bombardment gun is composed of a well-
shielded, counter-wound, pancake tungsten filament to provide uniform
heating of the test vehicle emitter. As the interelectrode spacing is
varied, the gun remains stationary; however, the variation amounted to
0.015 inch, at most, and the emitter temperature variation caused by
this corresponding gun-to-emitter spacing change is controlled with a
fine-ad just potentiometer on the bombardment voltage.

The electrical connections were made in the following
manner: The collector-radiator straps are connected by flexible leads
to copper bus bars equipped with cooling coils on either side of the
device. The guard ring and emitter connections are made with closed
copper tubes which serve both as water-cooling coils and current con-
ductors. Since the emitter carries a much higher current load than
the guard ring, the cross section of the emitter tubing wall is greater
than that of the guard ring conductor in order to permit current den-
sities of 200 amperes/cm without large IR losses. As indicated in
Fig. 2-14, the two copper cooling rings are supported at the stainless
steel supports and insulated by ceramic sleeving. Flexible copper
straps provide electrical connection between the emitter and guard ring

and their respective cooling rings at three symmetric positions.
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It was observed during the course of secondary ex-
perimentation supporting the test vehicle design that symmetric attach-
ment of current leads and cooling coils with torque wrench settings was
essential to reliable heat transfer as well as mechanical support. For
example, during the operation of the variable parameter test vehicle,
an identical ''zero" reference for the interelectrode spacing was main-
tained through hundreds of hours of operation; that is, for the same
element temperatures, current load, etc., the individual dial indicators
would register the same absolute position of emitter and collector at

the condition of electrical short within less than 0.0001 inch.

2.2.5 Rhenium-Rhenium Electrode Measurements and Inter-
pretation

Over 1100 hours of reproducible electrical output was

obtained from the rhenium-rhenium variable parameter test vehicle, a
testament to the design philosophy and fabrication technology discussed
in the preceding paragraphs. The reproducibility was within millivolts
of dc voltage output and milliamperes of dc current as measured with
0.1% accurate meters and shunts.

The ranges of parametric operations covered during this
period were:

Temitter 973°k-2400°K

T . 400°k -700°K
CS reservolr

ov._ (o]
Teollector 450°K-1300°K
Interelectrode spacing 0.0001-0.015 inch
2
Tsat 180 amperes/cm

These values either approximated or exceeded the design objectives

listed in Subsection 2.2.
The data offered in the following paragraphs is con-
sidered to be experimentally absolute wherein no attention to detail

has been spared. For instance, all pyrometers were calibrated against
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an NBS certified standard lamp before, during, and immediately after
the test vehicle operation. The pyrometers were of the micro-optical
type with bulb filaments approximately one-sixth the diameter of the
blackbody holes sighted upon. The thermocouples consisted of contin-
uous wire from the surface being measured through the vacuum station
port and ending in a 0°C ice bath. Potential leads were attached at
the device terminals with wire of the same material as the terminal to
insure that no thermal emf was generated.

The principal purpose of the variable parameter test
vehicle was to obtain thermionic converter optimization data, particu-
larly as a function of spacing between the electrodes. In addition,
and perhaps of equal importance, the test vehicle offers a measurement
of basic plasma parameters such as the pressure-distance product. The
paragraphs that follow contain the results of over 450 I-V character-
istics and 1100 dc, steady-state data points yielding the most defini-
tive characterization of thermionic performance known to date.

2.2.5.1 Converter Optimization Data for the Rhenium-
Rhenium Electrode System

The converter optimization consisted of opti-
mizing the dc current output of the vehicle as a function of spacing,
cesium temperature, and collector temperature, at a true emitter tem-
perature of 1735°C at three voltage outputs of 0.8 volt, C.7 volt, and
0.6 volt as measured at the test vehicle terminals. The experimental
procedure consisted of employing an electronic load to maintain a con-
stant voltage output and setting a fixed collector temperature, fixed
spacing, and varying the reservoir temperature until an absolute maxi-
mum in output current had been obtained. The cesium reservoir temper-
ature was varied between 3100C and 350°C. At each fixed collector
temperature, the spacing was varied between 0.002 and 0.005 inch.

This procedure was repeated for collector root temperatures of 57OOC,

59600, 610°C, and 660°C. Collector root temperatures are quoted since

the upper collector surface immersion thermocouple opened during the
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first few hours of vacuum outgassing. The precise matching collector
surface temperature could be determined when the device is disassembled.

While exceptional performance is noted at
very close spacings of less than 0.0003 inch, the following data are
intended for practical, reproducible converters operating in the arc-
moge. The optimum parameters for maximum power output (15.44 watts/
cmL) at 0.8 volt are: collector root temperature 61000, cesium reser-
voir temperature 33100, and interelectrode spacing between 0.0032 and
0.0038 inch — nominally 0.0035. The 0.80-volt data are shown in Figs.
2-15 through 2-18. The optimum parameters for maximum power output
(21.0 watts/cmz) at 0.70 volt are: <collector root temperature 6220C,
cesium reservoir temperature 3420C, and an interelectrode spacing of
0.0026 £0.0002 inch. The 0.70-volt data are shown in Figs. 2-19,
2-20, and 2-21. At this point, it should be noted that the collector
surface temperature is expected to be different for 0.8 volt than for
0.70 volt even though the root temperature is the same. Subsequent
measurements in operating converters and other test vehicles have sub-
stantiated this. Figures 2-22 and 2-23 show optimization data for 0.6-
volt operation.

The 0.8-volt output was re-examined in more
detail since the contract work statement identified converter perform-
ance level. Since only 15.4 watts/cm2 at 0.8 wvolt are available at
practical converter spacings, it was of interest to investigate the
spacing where more output was available but with the spacing very
close.

The power output variation at 0.8 volt as
a function of spacing was measured with the collector root and reser-
voir temperature set at their optimum values of 6100C and 3310C, re-
spectively. Keeping the voltage output constant at 0.8 volt and only
varying spacing, the current output variation was determined. This is
shown in Fig. 2-24. Of particular interest is the minimum power point

observed at a spacing of 0.001 inch. As the spacing decreases further,
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the current (power) output increases again. This was the first time
behavior of this type had been obtained in the emitter temperature
region above 1300°%C (Ref. 2). The data show that only at spacings

of less than €.0003 inch will the power output exceed that available
at a spacing of approximately 0.003 inch. An inherent difficulty was
encountered in taking these data: The collector temperature is ex-
tremely difficult to maintain at a constant value since the current
load continually varies; moreover, at the closer spacings (less than
0.0005 inch) small collector temperature changes produce erroneous
spacing measurements.

2.2.5.2 Voltage-Spacing Relationships for the Rhenium-
Rhenium Electrode System

After establishing the variation of power
output (at 0.8 volt) with spacing, shown in Fig. 2-24, it was desir-
able to relate the variation to the cesium plasma parameters. To
achieve this, the power output was measured as a function of spacing
at a constant dc current. The measured quantity is the voltage output
variation with spacing. This variation of voltage with spacing at con-
stant current is shown in Fig. 2-25. The advantage of this method over
the previous method is that all spacing problems due to differential
expansion are eliminated due to the steady-state vehicle temperature
distribution. ‘

Figure 2-25 is the voltage variation at a cgn-
stant 38 amperes at the vehicle parameters for maximum power output of
0.8 volt, i.e., collector root temperature of 610°C and cesium reservoir
temperature of 331°. Figure 2-26 is a similar plot at a higher cesium

o . , .
= 0cC. he d rrent is the same in Figs. 2-25
pressure, Tcesium 350°C The dc cu g

and 2-26, but the power output is lower for the higher reservoir tem-

peratures. This is as expected, since the optimum power was determined

o
. = 331°C.
to occur at Tce81um
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Figure 2-27a is the voltage output-spacing
relationship at a constant current of 60 amperes at the vehicle param-
eters for maximum power output of 0.7 volt, i.e., collector root tem-
perature of 622°C and cesium reservoir temperature of 344°C. The
voltage output minimum of 0,37V in Fig. 2-27a is much less than the
minimum corresponding voltage output of 0.62V in Fig. 2-25. This is
consistent with gas discharge phenomena since the extraction voltage
or cathode sheath voltage required for drawing 60 amperes is greater
than that for 38 amperes and appears as less voltage output from the test
vehicle.

Several interesting observations were made
during accumulation of the experimental data: (1) at all spacings less
than the minimum at 0.0005 inch, the test vehicle was operating in the
space charge mode; (2) the minimum power point was a very unstable
operating point due to the fact that at this spacing (0.0005 inch),
the ignition point coincides with the dc operating point and slight
variations in reservoir temperature cause ignitions and extinctions of
the arc; and (3) the data were obtained by taking dc data points and
then sweeping the vehicle with 60 cycles ac to take an oscilloscope
I-V characteristic. Due to the increased collector heating and emitter
cooling resulting from operation at the high current portion of the
sweep, spacings of less than 0.0002 inch cannot be maintained if the
sweep is applied for more than approximately 30 seconds; that is, high
current sweep operation causes shorting of the vehicle at close spac-
ings due to thermal expansion of the collector.

Utilizing Langmuir's equation to determine
the cesium vapor pressure associated with a particular reservoir tem-

perature:

_ 4041

T
K oK

11.0531 - 1.35 1og10 TO (2-11)

loglo Pmm
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The pressure-spacing products (pd) in mil-torr for the relative maxi-
mums in Figs. 2-25, 2-26, and 2-272 were determined. The results are
shown in Table 2-V. The fundamental feature of the pd product results
from the similarity relationships; that is, certain characteristics of
a sustained discharge obey a similarity law relating dimensions and
basic parameters. Therefore, for a discharge in identical gases and
identical electrode materials, the vapor pressure, field intensities,
and space potentials are directly related to the ratio of the spacings.
Thus, as expected, the maximum power points of Figs. 2-25, 2-26, and 27a

occur at the same pressure-spacing product.

TABLE 2-V
0o X .
Tcesium C EEE d (mil) pd (mil-torr)
331 4.1 0.2 3.9 16.0 +0.8
344 5.3 0.2 3.0 . 15.9 +0.8
350 6.22 £0.3 2.7 16.8 +0.8

In all of these voltage-spacing measurements,
the constant cesium reservoir temperature, collector root temperature,
and emitter temperature along with constant current density results in
a constant sheath thickness at the cathode and anode, constant plasma
density, and constant plasma electron temperature. Therefore, the
voltage output variation with spacing may be related to a voltage pro-
file of the vehicle interelectrode space. This is not to say that the
voltage output can be interpreted as a direct measurement of the
discharge potential. In fact, the voltage output of the test vehicle

is related to the internal voltages by the following equation:

- - - +
Vout chd + Vm Vcathode sheath Vplasma Vanode sheath (2-12)
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where

chd = contact potential difference between the cathode and
anode
Vm = gpace charge minimum voltage; i.e., if a double sheath

exists at the cathode, Vo © voltage barrier necessary
for an electron to overcome as it proceeds from the
cathode surface to the accelerating portion of the
sheath

cathode sheath = potential drop from the voltage minimum iou the plasma

= potential drop in the plasma
Vplasma P rop P

= h lerating or retarding voltage at the
Vanode sheath value of the accelerating or ret g g

collector

V.node sheath ™Y be zero under certain conditions of electrode geom-
etry, anode temperature, and spacing. Thus, the variation of output
voltage with spacing is a summation of all the spacing dependent terms
of Eq. 2-12.

Three areas of interest have been designated
on the curve in Fig. 2-26 for the voltage variation with spacing at a
-cesium temperature of 350°C. 1-V characteristics for each of the points
of interest are shown in Fig. 2-27. Point A shows the characteristic
at an interelectrode spacing of 0.0002 inch; the dc point of 38 amps
current is plainly visible on the characteristic. .The ignition point
can be observed at the top of the photograph occurring at approximately
60 amps and 0.5 volt. It is apparent from this characteristic that the
vehicle, for a spacing of 0.0002 inch and at the dc point, is operating
in the space charge limited mode. Figure 2-28 shows the potential dis-
tribution in the interelectrode space at the specific points on the
voltage spacing curve. Again, point A indicates the classical double-
diode space charge distribution. Point B is at the minimum of the
voltage-spacing curve. Figures 2-27 and 2-28 show the I-V character-

istic and potential distribution at this point of operation. As can
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FIG. 2-27 1-V CHARACTERISTICS FOR THE OPERATING REGIONS OF SPACE-CHARGE
LIMITED, INCIPIENT BREAKDOWN, AND FULLY DEVELOPED PLASMA

(Ref. Fig. 2-26)
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FIG. 2-28 POTENTIAL DISTRIBUTION DIAGRAM FOR SPACE-CHARGE, INCIPIENT
BREAKDOWN, AND FULLY DEVELOPED PLASMA AT THE dc POINTS A,
B,  AND C (Ref, Fig. 2-27)
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be seen in Fig. 2-28, the dc operating point for point B occurs
directly at ignition. This operating point is very unstable since
the constant current point can occur at two different voltages. Com-
pared to point A, the voltage output has decreased to allow for the
accelerating potential distribution for electrons into the anode. A
plasma has not developed yet, but as this potential approaches the
first excitation potential for cesium, the ionization mechanisms can
be optimized. This process continues until point C is reached. At
this point, a fully developed plasma exists, as typified by the poten-
tial diagram of point C in Fig. 2-28. 1In all of the potential dia-
grams of Fig. 2-28, the plasma potential is assumed to be matched to
the anode for the sake of simplicity.

Returning to the data at close spacing, a
preliminary analysis was performed on the space charge region of the
voltage-spacing curve of Fig. 2-29. Using both the Childs-Langmuir
space charge equation and the collision dominated space charge equa-

tion, dV/dx was calculated:

3/2
g = & /3—9!—— Childs-Langmuir  (2-13)
9r m d2

2 2
e %—“———— Y (ollision (2-14)
electron x dominated

(&
|
oo

where A = electron-atom mean free path
v = electron-atom collision frequency
T = electron temperature
electron

The transition from the classical space charge limited mode and the

plasma dominated region results from the increase in the space charge
current (86 percent) produced by ion neutralization and the increased
contribution of the collision dominated space charge current given by
Eq. 2-14. dV/dx was evaluated at point A where X = 0.0002 inch and J

is a constant 19 amperes/cmz. The results are shown in Table 2-VI.
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TABLE 2-VI

dv/dX at 0.0002 inch

Eq. 2-13 Eq. 2-14 Experimental
431 volts/cm 22.6 volts/cm 512 volts/cm

Table 2-VI indicates that within the accuracy of experimental deter-
mination, the Childs-Langmuir law applies to region A of Fig. 2-26
and for these short spacings the vehicle is definitely operating in
the classical space charge limited mode.

A point-by-point differentiation of the
curve in Fig. 2-26 is shown in Fig. 2-29. This is not a plot of the
internal field intensity since the plot is of dvout/dx' Differen-
tiating Eq. 2-12 results in:
out dvcathode sheath dvplasma dvanode sheath

v
x| ax - Tax ° ax (2-15)

Therefore, Fig. 2-29 represents the contributions of several spacing
dependent terms in the voltage output equation. The shape of the
curve is similar to the field intensity distribution of a gas dis-
charge, but additional analysis is required to completely pinpoint the
regions of influence of each of the voltage output equation terms.

One observation can be made at the present time. The constant
dVout/dx beyond point 'C" seems indicative of the formation of a posi-
tive column in the plasma of a thermionic converter for interelectrode
spacings greater than 0.0035 inch and at the test conditions stated.

2.2.5.3 Cesiated Work Function Measurements from
Polycrystalline Rhenium

In all of the cesiated work function measure-

ments, the volt-ampere characteristics were obtained by the combined
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dc and ac method. This method is utilized since it:traces an instan-
taneous characteristic at fixed parameter temperatures. The dc operat-
ing point is usually set by an electronic load. Thévsweep transformer
then sweeps out a portion of the I-V characteristic around this dc
point after it is ascertained that the element temperature, particu-
larly the emitter, maintains the same value. Collected current is
determined by measuring the voltage drop across a calibrated, 0.1-
percent-accurate shunt and displayed on the y-axis of an x-y scope.
Applied voltage or generated voltage is measured directly across the
test vehicle terminals and displayed on the x-axis of the oscilloscope.
To accurately determine saturated emission, it is sometimes necessary
to sweep the afc voltage as much as 2 volts into the applied voltage
quadrant. Since the zener diodes in the electronic load cannot hold
off more than 0.5 volts in the forward direction, the electronic load
was replaced by a resistive load across the test vehicle and a low
inductance, low impedance, secondary stepdown transformer employed as
a sweep source. The saturated emission is defined as the intersection
of the extrapolated Schottky slope and the slope of the plasma region.
Figure 2-30 consists of three I-V characteristics with an applied
voltage of between 1.5 and 2.0 volts. To insure that the saturated
electron emission is independent of interelectrode spacing, three
spacings were selected for emission measurement: 0,001, 0.003, and
0.006 inch. The characteristics show that the measured saturated
emission was constant within + 5 percent for the same conditions of
emitter and reservoir temperature while the spacing varied by a factor
of six.

Exact determination of temperature is a very
important part of accurate electron emission measurements. For all
temperature determinations, other than the emitter and collector,
calibrated Chromel-Alumel thermocouples traceable to the National
Bureau of Standards were used. The emission measurements were con-

o o
ducted over the emitter temperature range between 1000 K and 2000 K.
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FIG. 2-30
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The temperature for the higher portion of the emitter range (above
12000C) can be determined very accurately by comparing the color of a
10-to-1 blackbody hole in the emitter with a micro-optical pyrometer.
Below 12000C, optical temperature measuring methods require large
corrections due to radiation reflections and emissivity changes.
Therefore, thermocouples are required to measure the temperature
ranges below 1200°¢. Tungsten-rhenium thermocouples (W-5Re/W-26Re)
were attached to the emitter by tantalum pads. These thermocouples
were calibrated by platinum-rhodium couples in the lower range and
blackbody holes in the higher range to give the saturated emission
data continuity over the complete temperature range. Figure 2-31

shows the thermocouple calibration with a considerable range of cross-

correlation.

Figure 2-32 is a plot of the saturated elec-
tron emission from polycrystalline rhenium for three different cesium
reservoir temperatures. There are two significant results to be obtained
from this figure: the electron current density and the minimum work
function. The electron density measured from the polycrystalline
rhenium emitter is a factor of two higher than {110} single crystal
tungsten emission (Ref. 3) measured for approximately the same cesium
reservoir temperatures (arrival rate), and a factor of ten higher than
the cesiated electron emission measured from polycrystalline molybdenum.
The minimum work function for the polycrystalline rhenium converges to
a value of approximately 1.45 volts. This work function is approxi-
mately 0.1 volt less than the minimum work function reported for poly-'

crystalline tantalum and polycrystalline molybdenum.

The importance and value of these data is
that they were obtained in a system and manner directly related to

operational thermionic energy converters.
To determine collector surface work functions,

the saturated emission from the collector must be measured. This is
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obtained by examining the I-V characteristic beyond open circuit voltage.
This is, in effect, reversing the potential distribution within the
interelectrode space, allowing the collector to act as an emitter.
Figure 2-33 shows I-V traces for two sets of parameters. In these
photographs, the forward saturated emission is obtained in the positive
applied voltage quadrant, and the reverse saturated emission (from the
collector) is obtained in the negative applied voltage quadrant.
Knowing the collector surface temperature, the saturated emission can
te plotted versus temperature in the same manner as the emitter data
were presented. Since the collector surface thermocouple was inopera-
tive, no accurate determination of collector work function could be
made during these tests. An approximate collector work function can

be determined by estimating the collector surface temperature as
follows: The temperature drop down the collector barrel as measured
during the test vehicle design should be no greater than 1000C for a
thermal input of 265 watts/cm2 and no less than 400C for a thermal
input to the collector surface of 150 watts/cmz. Therefore, for a
collector root temperature of 727°C and a collector saturated emission
of 42.5 A/cm2 as shown in Fig. 2-33a, a collector work function between
1.42 and 1.34 volts is obtained. For the second case, in Fig. 2-33b,
the work function would lie between 1.45 and 1.36 volts. This corre-
lates well with the work function determination of the emitter.

2.2.5.4 Miscellaneous Measurements from the Rhenium-
Rhenjum Electrode System

Bare work function, or more properly, low
cesium coverage (i.e., 8§ < 0.01), measurements were taken from the
polycrystalline rhenium emitter. The saturated electron emission was
measured over the emitter temperature range from 19730K to 2133OK at a
reservoir temperature of 122°C which was the minimum achievable. The
work function was computed by way of the Richardson-Dushman equation
assuming a pre-exponential A value of 120 amps/cm2 - OKZ. The work

function values are indicative of the upper portion, or high-temperature
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end, of the Langmuir S curve, ranging in value from 4.45 volts to
4.75 volts; the latter value represents the closest condition of no
cesium coverage on the emitter surface.

There are two problem areas in obtaining
electron emission measurements where current densities are low énd
emitter temperatures high. Low current density measurements are
difficult to make since leakage paths are available across cesium-
coated ceramics. To eliminate this leakage source, a dc null circuit
was employed which voided current leakage over the collector and guard
ring insulators. The schematic for this null circuit is shown in
Fig. 2-34. All instruments used in the circuit were Sensitive Research
meters certified at 0.1 percent accuracy. A point-by-point dc
measurement of the test vehicle I-V output was plotted utilizing the
null circuit. Figure 2-35 shows three such curves where each point on
the curves is a dc, steady-state value read from high accuracy meters.

The second problem in obtaining emission
data is accurate temperature measurement of the emitting surface.
Identical to all emitter temperature measurements in excess of 1100°¢c
reported from the test vehicle, the temperature was determined by
directly viewing a 10:1 depth-to-diameter hohlraum with a micro-
optical pyrometer which is periodically calibrated against a NBS
standard lamp. For the high emitter temperatures (i.e., ZOOOOK), the
normal transmission loss through the bell jar increases. It was there-
fore necessary to correct the observed temperature by an additional
8°c to 13°¢C depending on the temperature.

Table 2-VII summarizes the measurements
taken from the emitter at the conditions described. The bottom of the
"S" curve is evident from the work function change of only 0.02 volt
over a 100°C increase in emitter temperature. Emitter temperatures
higher than 213300 are desirable to complete the picture of a non-
cesium-covered value of 4.75 volts; however, higher emitter tempera-
tures may alter the surface structure of the emitter and render the

previous pd data and cesiated emission measurements nonreproducible.
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TABLE 2-VII
SUMMARY OF BARE WORK FUNCTION MEASUREMENTS

J (amp/cm2 6 (volts)
S -3 0 2 0,2
x 10 7) T(K) A = 120 amps/cm - K
1.8 1973 4.45
1.85 2008 4,53
2.42 2100 4.55
3.25 2133 4.75

, o
(NOTE: Data taken at a constant cesium reservoir temperature of 1227C.)

Curve B from Fig. 2-35 was plotted on
semilog paper to analyze the Boltzmann slope of the I-V curve. Except
at the bottommost portion of the curve, where some exponential behav-
ior is apparent, there does not appcar to be a true retarding field
portion of the curve. This lack of linearity is probably caused by
the presence of cesium atoms in the interelectrode spacing which gives
rise to collisions. As noted previously, it was not possible to lower
the reservoir temperature below 122°¢ without major structural changes.

The last miscellaneous measurements to be
taken from the rhenium-rhenium test vehicle were cesium conduction
measurements.

To measure the heat transfer from a thermi-
onic emitter due to cesium vapor conduction requires the detection of
small changes in heat input to the emitter. Therefore, it is desir-
able to reduce or completely omit electron emission from the emitter
during the course of these measurements since the heat transfer asso-
ciated with electron evaporation from an emitting surface may be 10
times that of cesium conduction. The measurements of cesium conduc-
tion heat transfer were always taken at a condition of no current flow
in the test vehicle. .

The procedure for taking cesium conduction

measurements is as follows:
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1. The emitter temperature is set at 1735%¢ true; the collector
root temperature is set at 4650C; and an initial interelectrode
spacing of some arbitrary value (e.g., 1 mil) is set.

2. The cesium reservoir temperature is set at some initial low
value such as BOOOC, and the electron bombardment voltage-
current is measured for the preset conditions of T, = 1735°¢C

E
(true), T = 46500, and spacing of 1 mil.,

coll. root
3. Progressively increasing cesium reservoir temperatures are

established and the increase in homhardment nower te maintain
the preset emitter temperature is recorded. The collector
root temperature is fixed by a temperature controller which
regulates the heater input power to the collector to account
for the additional heat input via cesium conduction. Measure-
ments were also taken by decreasing the cesium vapor pressure
to reproduce the data.

The sources of possible error in these measure-
menst are: reading accuracy of the meters which is about 0.5 percent,
the spacing gages which are accurate to within £0.0001 inch, and thermo-
couple readings of the reservoir which is a +1 percent Chromel-Alumel
thermocouple,

Measurements were made according to the pro-
cedure outlined above for interelectrode spacings of 0.2, 0.5, 1, 2, and
3 mils and cesium reservoir temperatures ranging from 573°K to 7OOOK.

In all cases, the collector root temperature was preset and controlled
at a constant 7380K while the emitter bombardment power was adjusted to
maintain an emitter temperature of 2008°K.

The results of the measurements at the two
closest spacings are shown in Table 2-VIII. The cesium reservoir tem-
peratures are shown in the first column and the corresponding cesium

vapor pressures in the second column. The vapor pressurew were calcu-

lated from the equation:

3
log PCS (torr) = ‘6.91 - (3.80 x 10 )/TCs
or .
o 4041
log,, B = 11.0531 - 1.35 log, ) TCK) - oy
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TABLE 2-VIII

BOMBARDMENT POWER REQUIRED FOR T, = 1735°%
AS A FUNCTION OF Tcs FOR INTERELECTRODE SPACINGS
OF 0.2 AND 0.5 MIL

o P - W=20.2 m}l W= 0.5 mil
cs cs H Al u AR

(°®) (torr) ) ) ) )
573 1.9 261.9 257 .4

15.5 17.5
603 4.1 271.6 271.9
617 5.5 277 .4 274.9

10.9 10.0
741 9.3 282.5 281.9

The third and fifth columns show the total bombardment power delivered
to the emitter to maintain the emitter at 1735°C at the indicated
cesium reservoir temperatures for the spacings of 0.2 and 0.5 mil,
respectively. Note that these values represent several power losses
in addition to cesium vapor conduction losses and, therefore, their
magnitudes are less important than their differences. The power dif-
ferences between the first and third reservoir temperatures and the
second and fourth reservoir temperatures are shown in the fourth and
sixth columns. Since each power measurement is made by measuring
bombardment current and bombardment voltage with a meter reading
accuracy of 0.5 percent, the reading error is about 1 percent in the
absolute magnitudes. This results in an error in the differences in
power that can be as high as 2.5 watts.

The results of the measurements at the larger
spacings are shown graphically in Fig. 2-36. The plotted points are
power differences calculated from the measured power levels. Each
curve is identified by the interelectrode spacing in mils. The errors
in these data points are comparable to those of the close-spacing data
of Table 2-VIII, although the relative error is less. The solid lines
are calculated from the semiempirical equation determined by Kitrilakis

and Meeker (Ref. 4), with the constants shown in the figure.
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Although all the cesium conduction measure-
ments were made at relatively high cesium pressures from about 1 torr
to 3C torr, there are two transport regimes represented by the data
of Table 2-VIII and Fig. 2-3C. The data from the mcasurements at 0.2
and 0.5 mil spacings indicate a free-molecular transport while those
made at the larger spacings indicate transport is occurring in the
transition region between free-molecular and mass or viscous flow.

Free molecular heat transport will occur
when the cesium mean free path is approximately equal to, or greater
than, the interelectrode spacing and is characterized by its inde-
pendence of spacing. This characteristic is shown by the power dif-
ferences of Table 2-VIII for the two close spacings. Within experi-
mental error, these differences are identical although the spacings
differ by a factor of 2.5. Estimates of the cesium mean free path
based on hard-sphere interactions are consistent also with this in-
terpretation. Assuming a cesium diameter of 4 to 7% and cesium atom

A . 16 -3 .
number densities ranging from 3.2 - 10 cm -~ at the lowest reservoir

temperature to 1.4 - 1017 cm.3 at the highest temperature, the mean
free path ranges from a maximum of 1.7 mils for the low pressure and
smaller diameter to 0.1 mil at the higher pressure and larger diameter.

The equation used for these estimates is

L (cm) = Q/E 7 32 n)-l

where

Q

hard-sphere diameter

=
1

number density

For free-molecular transport, the heat flow

between parallel plates for monatomic cesium is given by:

H = 2aeu ks(Te-Tc)
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where

ue = c¢ffective accommodation coefficient for heat transfer
4 = ceslium arrival rate
k = Boltzmann's constant
S = area of the plates
Te’Tc = emitter and collector temperatures

The arrival rate is calculated by

1/2
« = P /(2n mkT) /
cs
where
m = mass of the cesium atom
PCS = vapor pressure of cesium in the reservoir

The appropriate temperature in this equation is the temperature at

the point where the cesium enters the interelectrode region from the

channel connecting this region and the reservoir. For the test vehicle,

this temperature is the collector temperature. Using T, - TC = 1.24
10> %Kk and T, = 760°K,
H (watts) = 3.8a S P
e cs

2
for PCs in torr and S in cm . The difference, AH, between the heat

conducted at two cesium pressures is

AH = 3.8 a, S A PCS
assuming constant a, and S. Using the data of T;ble 2-1V fgr the four
power differences shown, ae S varies from 0.5 cm to 1.3 cm” with an
average of C.9 cmz. For an area of 2.4 cmz, this indicates the effec-
tive accommodation coefficient is C.4. This result, although based
on data with considerable relative error, is consistent with the re-

sults of others (Ref. 5) for heat transport in the molecular flow
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regime. Since the accommodation coefficient at the low cesium cover-
ages on the emitter at these temperatures and pressures is undoubtedly
very close to unity, it is reasonable to conclude that the value 0.4
is characteristic of the collector surface covered by at least one
monolayer of cesium.

The data for spacings of 1 mil and larger
were not examined completely; within experimental error, it follows

the predictions of the semiempirical formulation.

2.2.6 VPTV Investigation of the Rhenium Emitter/Molybdenum
Collector System

A second variable parameter test vehicle, similar to
the first, was assembled to investigate the thermionic performance of
a rhenium emitter/molybdenum collector system. A second vehicle was
constructed rather than cutting apart the rhenium-rhenium device, since
it is estimated that at least 1000 to 2000 hours more of test time are
available in the first vehicle for characterizing the low-temperature
behavior of the rhenium-rhenium system.

The rhenium-molybdenum test vehicle contained only one
major structural change: The guard-ring was secured by vertically
positioned screws to the collector root rather than horizontally into
the collector barrel. The same techniques of fabrication and processing
were applied to both vehicles.

4 It was predicted that the same shape of voltage-spacing
curves would be observed and that the pd product for maximum power out-
put would be identical within experimental determination. The ma jor
expected difference between the two systems of electrodes was the volt-
age output for equivalent conditions of temperature and current load.
The cesium-on-molybdenum system yields a minimum work function of 1.55
eV as compared to the cesium-on-rhenium system which yields 1.47 eV.
Therefore, the voltage versus spacing curves for rhenium-molybdenum

would be similar but displaced by approximately 0.080 volt. Likewise,
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the converter optimization data for the rhenium-molybdenum svstem
would indicate less performance output by C.080 volt for current
densities on the order of 30 amperes/cm

The paragraphs that follow reveal the interesting
nature of a nonidentical electrode system wherein work function
changes on the collector surface were observed and measured. Spacing
versus voltage output data was taken for the rhenium-molydbenum system
and a hybrid system of rhenium-rhenium/molybdenum deliberately created
by vacuum evaporation of rhenium from the emitter onto the collector.
Converter optimization data was obtained at 0.8V, 0.7V, and C.6V.

2.2.6.1 Voltage-Spacing Relationships for the Rhenium-
Molybdenum System

The first data obtained from the rhenium-
molybdenum test vehicle is shown in Fig. 2-37, where the rhenium-rhenium
data for identical test conditions is shown as the dotted curve. That
the performance was near-identical suggested that a small amount of
rhenium might have been evaporated onto the collector surface during
terminal exhaust processing prior to cesium loading. Referring to the

process data sheets, it was ascertained that the emitter had operated

at 18000C for 12 hours. An elementary calculation based on vacuum
evaporation weight losses indicated that three angstrom layers were
evaporated from the emitter and, assuming an accommodation coefficient
of unity on the collector surface, condensed on the collector.

The lifetime of this performance was limited
and within 7 hours of operation the voltage output was reduced by 10
to 15 millivolts. This reduction continued during further operation
until after 33 hours, the voltage output versus spacing curve appeared
as shown in Fig. 2-38. The collector surface thermocouple being oper-
able in this vehicle afforded an accurate measure of the collector
work function, which was determined to be 1.5l to 1.53 eV. It was
reasoned that the initially evaporated rhenium had diffused into the

molybdenum (bulk diffusion) or around the molybdenum (surface diffusiom).
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In either case, the rate of diffusion is highly dependent upon the
collector surface temperature. The length of time required to deplete
the surface would depend upon the initial amount present on the sur-
face, the rate of diffusion, and the rate of replacement from the
emitter. Since there is almost an absolute lack of diffusion data
for these systems, and particularly for thin coatings, it was felt
that the balance of data taking should be conducted on stable surfaces
to eliminate possible concern that the test vehicle itself was failing
or that the drive mechanism had become faulty. The collector surface
was therefore replenished with evaporated rhenium from the emitter
operating at 2100°C with the cesium reservoir heaters secured. The
collector work function, after this processing, was determined to be
1.45 to 1.43 eV which agrees quite well with the work function deter-
minations from the rhenium-rhenium test vehicle. The average differ-
ence of 0.080 volt from these successive measurements also corresponds
to the voltage output lost in the spacing-voltage curves. This same
phenomenon was later observed in a rhenium-molybdenum thermionic con-
verter wherein the converter optimization data for -both the rhenium-
molybdenum and rhenium-rhenium/molybdenum systems was carefully docu-
mented and once again, a difference of 0.080 volt in performance out-
put was noted (see Section 5).

Before proceeding to the converter optimiza-
tion data, a voltage output versus spacing curve was obtained for 38
amperes fixed current level and the initial data of the test vehicle
was reproduced within 3 to 4 millivolts throughout the entire range of
spacing. In addition, a voltage-spacing curve at 60 amperes was
obtained which reproduced Fig. 2-27 within 5 millivolts over the en-
tire spacing range from 0.,0002 inch to 0.009 inch. These data further
substantiated the rhenium nature of the collector surface after the

evaporation process.
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2.2.6.2 Converter Optimization Data for the Rhenium-
Rhenium/Molybdenum System

As the title of this section implies, the
system of electrodes contained a molybdenum collector which had received
an evaporated coating of rhenium from the emitter. Moreover, this was
done to stabilize the process of data taking as just discussed. Figure
2-39 is a composite plot of the 0.8V, 0.7V, and 0.6V optimum performance
from the rhenium-rhenium/molybdenum system for an emitter temperature
of 1735°C (true hohlraum). The optimum data from the rhenium-rhenium
system is plotted for comparison. The only discernible ditference
between the two systems is the location of the optimum reservoir,
which for all other conditions of operation equivalent, is shifted, 3°C
to 4°¢ higher. While there may be some physical significance to this
shift, a value of 3°C to 4°C is certainly within +0.5% error of the
total reading — an acceptable limit for thermocouple response. More-
over, the location of the reservoir thermocouple junctions on the two
test vehicles could vary a sixteenth inch and account for small differ-

ences in temperature readings.
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3. SECONDARY EXPERIMENTS SUPPORTING CONVERTER TECHNOLOGY

3.1 Heat Transfer/Heat Rejection Investigation

3.1.1 Rokide '"C'" Emittance Investigation

The coating material most frequently applied to con-
verter radiators for efficicnt heat rejection has been Rokide 'C'", a
chromium oxide composite that has been reported (Ref. 6) to have a
total emittance as high as 0.9. 1In addition to their high emittance,
Rokide 'C'" coatings have been reported to be structurally stable at
temperatures as high as 12000C (Ref. 7). However, converter users
have observed the deterioration of Rokide 'C" on several converter
radiator extended life tests of 8,000 hours and longer. There is also
a wide spread in reported data concerning the emittance of Rokide 'C"
which has led to an uncertainty in converter design. An investigation
was therefore undertaken to study the structural stability of Rokide
"C" on copper and molybdenum substrates and to measure the total emit-
tance of Rokide ''C'" as a function of operating time, coating thickness,

and substrate material.

3.1.1.1 Stability of Rokide '"C'" Coated Molybdenum

A molybdenum rod was coated with Rokide ''C",
instrumented with Chromel-Alumel thermocouples for temperature measure-
ment , and mounted on a refractory fixture for extended operation at
temperatures of 6OOOC. Figure 3-1 is a sketch of a coating specimen‘
showing the coated and uncoated portions and the thermocouple loca-
tions. Measurements of the rod diameter were taken before plasma
spraying and were compared with the measurements of the rod diameter
after plasma spraying to determine the Rokide thickness. The thickness
of Rokide was determined to be 0.0025 +£0.005 inch. To provide a repro-
ducible coating schedule, close documentation of the plasma spraying

procedure was maintained.
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The sample was heated to 600°¢C by electron
bombardment in a vac-ion pumped environment of less than 5 x 10—8 torr
for 500 hours. The physical appearance of the coating did not change
during this period of time. There was no peeling, blistering, or
cracking of the Rokide even though a number of rapid thermal cycles
(greater than 30) occurred during test. Figure 3-2 is a photograph of
the sample after test. Ceramic-sheathed couples facing the Rokide
showed no evidence of discoloration which would be indicative of
coating deterioration. The electron bombardment input power remained
constant (as did the sample temperature distribution) during the 500
hours of operation.

The bell jar used for this test was calibrated
against a standard tungsten ribbon filament lamp before any testing of
the sample. It was again calibrated at 210 hours and at 492 hours.
This was done to determine what increase in light transmission losses
could be expected due to prolonged periods of testing. After 500
hours of operation, there was only a slightly noticeable coating on
the test bell jar. Table 3-I shows the increase in transmission
losses at three different times during the test run. There is no evi-
dence that the slight jar discoloration was due to heating of the
Rokide sample, but it appeared to have been caused by the evolution of
material from some of the stainless steel fittings inside the bell jar

which normally operate at 200-300°C during test.

TABLE 3-1

BELL-JAR TRANSMISSION LOSS AS A FUNCTION OF TEST TIME
DURING ROKIDE ''C" STABILITY EXPERIMENT*

Increase in Transmission Loss
(Bell-Jar Sourrounding Std. Lamp)

o Test Time
1000°¢ 1600°C 1700°¢C (Hours)
0°¢c 0% ogc 0 hours
3°¢ 10%¢ 10%¢ 210 hours
4°¢ 15°%¢ 19°¢ 492 (final)

*Most likely caused from steel fittings in vacuum station operating at
200-300°C
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FIG. 3-2

6952-Final

ROKIDE "C'"=-COATED MOLYBDENUM SAMPLE AFTER 500
HOURS OF OPERATION (Note: the alumina tubes
facing the Rokide coating are not discolored)
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3.1.1.2 Rokide '"C" Emittance Measurements

On several occasions during the 500-hour
test of the Rokide "C" coatings, the power to the sample was inter-
rupted and the sample was permitted to cool to room temperature.
Since the sample mounting arrangement prevented significant heat
losses by heat conduction, the major heat rejection during cooling was
by radiation. The rate of temperature decrease was dependent, there-
fore, upon the radiative properties of the sample surface. A compari-
son of temperature-time cooling curves Laken at varions stages of the
500-hour test indicated that the radiative properties of the sample
surface, i.e., the emittance of the surface, did not alter during the
test period. The cooling curves taken at the beginning of the test
and after approkimately 500 hours, shown in Fig. 3-3, are identical
within experimental error. This confirms the visual evidence discussed
in the preceding section for the stability of the Rokide '"C" coating
at temperature. |

Each time the power to the sample was turned
off to observe the cooling curves, the temperatures indicated by all
thermocouples attached to both the uncoated and coated surfaces became
identical within about 8 seconds. This time interval is small compared
to the total cooling period. The small differences in initial tempera-
tures caused by the asymmetric sample heating arrangement essentially
were eliminated during the cooling period, and it is possible to

describe the cooling curve by

4 4
me(dT/dt) = - [ERAR oT + e A 0T ] (3-1)
where
m = mass of the sample
CP = specific heat at constant pressure

sample temperature

time

rt
}
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Rokide "C'" emittance

area of the Rokide '"C" coating

€
R
EM molybdenum emittance

area of the bare molybdenum

>
I

M
ol

Stefan-Boltzmann constant

Over the small temperature range covered by the cooling curves of
Fig. 3-3, it is reasonable to assume (Ref. 8) that CP, €R’ and eM
are independent of temperature. With this assumption, Equation 3-1

can be integratcd and solved for the emittance of the Rokide '¢"

coatin €
8> R

mC
r
L 1 1 j AM (3_2)

P
€. = - =
R 30 Ay (t,-t) LT3 T3] M Ay

where the subscripts i and f refer to the initial and final values,

respectively. From Fig. 3-3, for ti 60 sec and tf = 480 sec,

T, = 803°K and T, = 633°K. Using €y = 0.2 (Ref. 7) €, = 0.79. This

value of the emittance of Rokide '"C'" is about 10 percent lower than

values generally quoted. This indicates that, in practice, an increase
in radiator area of approximately 13 percent is required to give the
same heat rejection as that computed using the cited data for Rokide
"C'" emittance. In the design of the converters of this program, this

difference was considered and is discussed in the section on converter
design.

3.1.1.3 Rokide "C'" Coated Molybdenum versus Rokide
"C'" Coated Copper

A copper rod, with dimensions similar to
those of the molybdenum rod just described, was coated with Rokide
"C", using the same process schedule and achieving the same coating
thickness. The sample was instrumented with thermocouples, placed in
a vac-ion pumped test chamber, and heated by electron bombardment to
determine the Rokide coating emittance and stability for 500 hours of

operation. Initial and final cooldown curves, shown in Fig. 3-4, were
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analyzed in the same manﬁer as just described for the Rokide-molybdenum
curves. The value for Rokide "C" on copper is identical with that of
Rokide "C'" on molybdenum (i.e., € =~ 0,78).

No degradation of the coating on copper
occurred over an extended test period of 500 hours operation at 600°¢C.
The sample was rapidly thermal cycled some 30 times during test;
however, no scaling, blistering, cracking, or peeling occurred. More-
over, the invariance of the cooldown curves over the 500-hour period
attests to the coating stability., A slight haze, similar to that
which appeared during the Rokide-molybdenum experiment, formed on the
bell jar surface, which resulted in a transmission loss of the same
order.

To insure that the coating thickness of 2.5
to 3.0 mils was adequate for achieving the maximum emittance value of
Rokide '"C", the molybdenum sample was stripped of thermocouples and
resprayed using the same process schedule for an overall coating thick-
ness of 7 mils. New couples were attached and the resulting sample
was operated again at 600°C. The identical nature of the coatings is
best described as follows.

1. The identical sample temperature distribution was measured
for the identical power input (filament plus bombardment).
2. An identical cooldown curve, point for point, was measured

along the entire time axis.

3.1.2 Nonintegral Collector-Radiator Investigation

The 1964 EOS production prototype converter contained
an integral collector-radiator which was die-forged from molybdenum
bar stock. The major advantages of the molybdenum integral collector-
radiator are: (1) a continuous heat transfer path unimpaired by any
braze interface or similar thermal impedances, (2) a mass-production
technique for fabrication, and (3) a mechanically strong, high-
temperature structural member. The sole disadvantage of the forged

molybdenum collector-radiator is a lower specific performance compared
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to materials such as copper, which due to their higher thermal conduc-
tivity have a reduced fin weight for cquivalent radiator heat rejection
capability.

An investigation was initiated which pertained to the
problems of reliably bonding a molybdenum collector to a copper radia-
tor for usc at high heat rcjection rates under thermal cycling condi-
tions. The scheme shown in Fig. 3-5 was selected to evaluate a braze
joint design which captivated the copper radiating fin so that the
thermal expansion mismatch between the copper and the molybdenum always
kept the copper part in compression. Shim-stock Nioro braze material
(82 percent gold - 18 percent nickel) 0.002 inch thick was inserted
in the slot on either side of the copper. Nioro wire (0.030 inch
diameter) was placed at the copper-molybdenum interface on either side
of the fin. The assembly was vacuum brazed at 925°C, the melting
point of Nioro. This resulted in a braze fillet that contained no
voids or cracks. As indicated in Fig. 3-5, the as;embly is dimensioned
to permit simulation of actual converter operation at thermal fluxes
through the bonded areca on the order of 200 to 250 watts. Over 100
cm2 of copper radiator were Rokided to provide ample heat dissipation
area for the experiment. The molybdenum portion of the assembly is an
integrally forged part in which the mounting holes and braze joint
were machined.

For the simulated thermal tests, the assembly was
mounted in a vacuum bell jar and heated indirectly at the collector
end by electron bombardment. Thermocouples were attached at several
locations on either side of the braze interface to measure the tempera-
ture drop across the joint for various thermal loads; An average
temperature difference of 5°C was measured across the braze joint for
a thermal flux of approximately 210 watts. The heat load was computed
using an EOS-measured value of 0.78 for the total emissivity of Rokide

o
"C" at a measured radiator spade temperature of 520 C.
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After the initial temperature measurements, the bond
between the copper and molybdenum was subjected to 329 thermal cycles
from 600°C to 200°C. The thermal cycle consisted of the application
of an on-off thermal load of 210 watts where the structure was allowed
to come to equilibrium at 600°C at which time the input was shut off
and the structure allowed to decay in temperaturc to 200°C. The tem-
perature risc and fall rate was limited soley by the basic constants
of the system. Throughout the series of thermal cycle tests, the
measured temperature drop remained SOC across the bonded interface.
In addition, no pecling, cracking, or blistering of the Rokide ''C"
coating occurred. It was concluded that the braze joint results in a
high quality thermal bond and performs reliably under severe test
conditions.

The weight of the entire assembly is 220 grams, as
compared to 230 grams for an integral molybdenum collector-radiator.
Therefore, for approximately the same weight, the amount of heat
rejected is almost double that of the all-molybdenum EOS production

converter collector-radiator which dissipated about 120 thermal watts.

3.1.3 L/A Design Curves for Collector "AT"

The collector heat load in a thermionic converter may
be calculated by summing the individual contributions of electron
heating, net radiation heat transfer from emitter to collector, and
the conduction heat transfer from cesium atoms, i.e.

Q = th + Qrad t ch. cond.

collector

The first term, electron heating, may be written as:

€kT

th =1 <¢c011 + __ZEl> (3-3)

6952-Final lo4




since the drift electrons dissipate the energy acquired by falling
through the potential of the collector work function plus random poten-
tial energy in the plasma. The value of € is chosen such that

1.3 < € = 1.5 depending on the plasma electron energy distribution

(see Appendix B). The value of Tp is selected to be 6000°K. The

1

collector work function of cesium on molybdenum, ¢ has been

coll’
measured at 1.55 eV. Therefore, the electron heating contribution is

= 1(2.2)

where I is the drift current or external circuit current from an
operating current.

The second term, net radiation heat transfer from
emitter to collector, is

- 4 4 > . -
Qrad B €effc <Tem '%oll ' (3-4)

where eeff is the effective emissivity of electrode system.

€ = (3-5)

€ €
em coll

The net radiation heat transfer for Tem = 2,000°K, T > 1,1000K,

coll

€ = 0.3, and € = 0.25, and for two square centimeters of area is
[

em

oll

= 26 watts :
Qrad v
The last term, cesium conduction, has been experimen-
tally determined to be

ch = 16 watts
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The sum of these contributions is substituted into
the heat conduction equation, and AT's (temperature differences
between collector surface and collector root) are computed for various
converter current loads. Figure 3-6 is a plot of this AT as a function
of the converter current with the collector L/A ratio as the parameter.
he collector cross-sectional area, A, is fixed by design to
accommodate a 2.0 cm2 emitter area. To define the emitter area without
drawing current from the emitter support structure (envelope), it is
necessary to provide 0.010 to 0.012 inch spacing between the envelope
and collector. The collector area, A, is therefore 1.9 cm2.
Consequently, at the design point of 50 amperes of
current flow, a collector barrel length of 0.6 inch results in a tem-
perature drop of llOOC. It is important to note that any slotted or stepped
portions in the collector barrel increase the thermal impedance since the

lines of heat flux are disturbed and do permit a simple, linear treatment.

3.2 Feasibility Experiments Related to Converter Fabrication

3.2.1 Converter Seal-Off

An experimental investigation was concluded
which established the necessary procedures for effecting a highly
reliable converter seal-off. Copper tubulation seal-offs performed in
the past with hand-operated pinch-off tools have always been vacuum
tight, but some were of marginal quality.

The seal-off operation is performed with a pinch-off
tool which applies pressure sufficient to cold-weld the converter
reservoir tubulation. A cold-weld may be leak tight and have the
external appearance of being a good pinch-off, but in microsection,
the actual sealing area may be only about 0.001 inch. A pinch-off
such as this is considered marginal since it cannot suffer any acci-
dental damage in the pinch-off area without loss of the vacuum seal on

the converter.
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Six pinch-offs were made with two different hand
tools (Varian and Kane). The pinch-offs were then cross-sectioned,
and examined for scal thickness. Of the six pinch-offs, only one had
a seal thickness greater than 0.005 inch, the rest were 0.001 inch or
less. Figures 3-7 and 3-8 show micro-sections of these marginal
seals. In general, the hand tools required continuous adjiustment fo
insure that the rollers mated properly. The rollers, though case-
hardened, require periodic replacement. Morcover, the actual pinch
operation using a hand tool is dependent upon the steadiness and skill
of the operator.

Six additional pinch-offs were made from the same
length of sample tubing. The tool used for these pinch-offs was a
Kane hydraulic tool having 1/4-inch and 1/8-inch diameter, fully
hardened tool-steel rollers. All pinch-off samples were examined for
seal thickness and were found to vary between 0.006 inch and 0.009
inch with no preference for roller diameter (Figs. 3-9 and 3-10). The
hydraulic tool requires only initial adjustment and occasional read-
justment; the rollers appear to be capable of lasting almost indefi-
nitely and the pinch-off operation proceeds with a smooth stroke,
independent of operator skill or experience.

A few general observations on pinch-off procedures
are outlined below which, if followed, should lead to consistent,
highly reliable OFHC copper tubing pinch-offs.

1. The copper (OFHC) must be first chemically cleaned to remove
all contamination induced by mill handling.

2. The copper must be annealed (after chemical cleaning) in a
high-vacuum environment at temperatures in the 700°C area
for 1/2 hour.

3. The pinch area should be preflattened with a flattening tool
and re-annealed. '

4. The pinch-off rollers or jaws should be made of fully treated
tool steel and they should be periodically checked for evi-

dence of warpage or misalignment.
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FIG 3-7

ANNEALED OFHC COPPER TUBING
1/4" 0.D., 0.030" WALL. KANE
HAND PINCH-OFF TOOL. (X75)

FIG, 3-8

ANNEALED OFHC COPPER TUBING
1/4" 0.D., 0.030" WALL.
VARIAN HAND PINCH-OFF TOOL.
(X75)
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FIG. 3-9

ANNEALED OFHC COPPER TUBING
1/4" 0.D., 0.030" WALL. KANE
HYDRAULIC PINCH-OFF TOOL WITH
1/4"-RADIUS ROLLER. (X100)

FIG. 3-10

ANNEALED OFHC COPPER TUBING
1/4" 0.D,, 0.030" WALL. KANE
HYDRAULIC PINCH-OFF TOOL WITH
1/8'"-RADIUS ROLLER. (X75)
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5. The pinch-off tool should be hydraulically actuated to

provide maximum sealing area and consistent pinching action.

3.2.2 Ceramic-Metal Seal

A ceramic-metal seal study was conducted to examine
seal reliability upon repeated thermal shock and also to establish a
thicker sealing flange for preserving and improving converter struc-
tural rigidity in the absence of a retaining member employed in pre-
vious EOS converter designs. In addition, limited life testing after
thermal shock testing was performed.

Three secal assemblies have been fabricated and leak
tested with a helium mass spectrometer leak detector of calibrated
sensitivity in the 10-10 cc-atm/sec range. Each assembly consists of
two niobium flanges with a right-angle spun surface that is flat to
within 0.001 inch. An alumina ring of high-purity (Wesgo AL 995) and
precision flatness (less than 0.0005 inch) was sealed between the
niobium flanges with a eutectic mixture of nickel and zirconium.
Brazing was accomplished in accordance with Specification GMP-34200/
020-GEN. The assemblies were identical in dimensions, except that the
flanges for each assembly were 0.020 inch, 0.030 inch, and 0.040 inch
thick, respectively, as compared to previous EOS production and experi-
mental converter flanges with 0.010-inch thicknesses.

The testing program and its results are summarized
below:

1. The 0.020-inch-thick niobium flange/alumina seal assembly
was thermally cycled 250 times from 220°¢C to 610°C at a
rate of 100°C/min and tested to be leak tight.
2. The 0.030-inch-thick niobium flange/alumina seal assembly
was thermally cycled 252 times from 220°C to 610°C at a
rate of 100°C/min and tested to be leak tight. This assembly

was subsequently operated for 1500 continuous hours at 700°c

and tested to be leak tight.
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3. The 0.040-inch-thick niobium flange/alumina seal assembly
was thermally cycled 189 times between ZOOOC and 600°C at
100°C/min and tested to be leak tight. The assembly was
subsequently cycled to a total of 289 times under the same

cycling conditions. The ceramic cracked during the last 100

cycles.

The 0.020-inch and 0.030-inch-thick niobium flange/alumina seals have

performed well under conditions of moderate to severe thermal shock

for a ceramic-metal seal assembly (alumina itself is limited to heating

and cooling rates of ZOOOC/min). In addition, the active alloy seal

appears to be capable of long-life operation at elevated temperatures.
The fabrication and testing experience acquired from

this secondary study was directly applied to the fabrication of con-

verters, since the assembly procedure for the converters included the

electron beam welding of prefabricated seals to converter subassemblies.

3.2.3 Electron Beam Welding

-3.2.3.1 Electron Beam Welding of Niobium-Molybdenum
and Niobium-Niobium

An experimental investigation was conducted
to examine the feasibility of electron beam welding prefabricated
ceramic-metal seals to the collector. Sample welds of niobium sheet
to molybdenum plate were made to determine a schedule that resulted in
good penetration into the molybdenum. A schedule of 150 kV x 4.2 mA
at a part speed of 91 in./min yielded penetration through the 0.020
inch niobium sheet and approximately 0.025 inch into the molybdenum
plate. A niobium flange was subsequently welded to a molybdenum rod
utilizing this schedule; however, the assembly leaked. A subsequent
assembly also leaked.

There has been a notable lack of binary
phase diagrams and information concerning the niobium-molybdenum

system. Hansen (Ref. 9) devotes only a paragraph to niobium-molybdenum

6952-Final 112




concluding that: "Nb and Mo form an uninterrupted series of body-

' However, more recent work on the

centered-cubic solid solutionms.'
Nb-Mo system indicates:

1. Intermediate alloys of Nb-Mo contain large pores indicating
that Nb-Mo and Mo-Nb diffusion rates in the melt are quite
different.

2. An increase in hardness from 200 kg/mm2 for 100 percent
molybdenum, to 420 kg/mm2 for molybdenum with only 15 percent

Niobium-niobium, as the materials to be
welded, was selected for weld feasibility. A niobium ring 0.060-inch
thick, was first titanium brazed to a molybdenum bar and then used as
a backing part for a 0.020 inch niobium flange. A schedule of 150 kV
x 2.8 mA at a part speed of 40 rpm resulted in a leak-tight joint. In
microsection, Fig. 3-11 displays a weld of good penetration into the
backup ring (approximately 0.020 inch).

With an electron beam welding schedule for
welding the flange seals of a prefabricated ceramic-metal seal to the
converter subassembly structure, the feasibility of a '"modular' assem-
bly was established. That is, all major subassemblies of a thermionic

converter are brought together and in two passes of an electron beam

welder an exhaust assembly is completed.

3.2.3.2 Electron Beam Welding of Rhenium-Rhenium

The choice of rhenium as an emitter material
for a high performance, long-life thermionic converter also establishes
rhenium as the emitter support (envelope) material. There are two
principal reasons supporting this: First, rhenium and the more common
structural materials, such as tantalum, tqusten, niobium, etc., form
low melting point eutectics and brittle intermetallic compounds, which
lack mechanical strength. Second, even if two such dissimilar materials
welded reliably, the emitter becomes "contaminated'" with envelope

material diffusing onto the emitter surface. Electron beam welding
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FIG. 3-11 ELECTRON-BEAM WELD OF 0.020-INCH
THICK NIOBIUM RING TO 0.060-INCH
THICK NIOBIUM RING. BEAM VOLTAGE
OF 150 kV X CURRENT OF 2.8 mA.
PART ROTATION SPEED OF 40 rpm
(Mag 100Xx)
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has proven to be a most effective mecans of joining converter parts, in
particular, the emitter/emitter-support structure. The welding is
done in a high vacuum chamber operating in the high 10-6 or low 10-5
range. The application of heat is instantaneous, which prevents part
warpage; also, the heat-affected zone is small and ductile, which

permits thermal cycling.

An experimental investigation was undertaken
and completed to establish the proper electron beam welding schedules
tor rhenium-rhenium. Iwo rhenium sheet sirips, each 0.020-iach thick,
were ground flat, chemically cleaned, and clamped together to serve as
feasibility samples for different electron beam parameters. Five
separate weld passes of minimum spot diameter (0.012 inch) were made
on the EOS Hamilton-Zeiss electron beam welder in a 4 x 10—5 torr
vacuum environment. Figure 3-12 illustrates that a beam power of
150 kV x 3.4 mA at a part speed of 100 in./min is not sufficient to
achieve penetration into the bottom part. However, a reduced part
speed of 90 in./min for the same beam power produced pénetration, as
shown in Fig. 3-13. A higher beam power and lower part speed of
150 kV x 4.7 mA at 80 in./min yields good penetration into the bottom
sheet, as shown in Fig. 3-14. It is interesting to note that while
the weld shown in Fig. 3-12 would be leak tight, the degree of bonding
is much greater for the latter schedule. Figure 3-15 illustrates the
effect of a wéld schedule sufficient to cause Biow-through in the
bottom sheet. The recommended schedule for electron beam welding a
0.020—inch-thick rhenium envelope to a rhenium emitter is 150 kV x 4.9 mA
at a part speed of 80 in./min. If the weld is circumferential, the
part speed, which is linear in this investigation, would be corrected
to revolutions/min. A minimum electron beam diameter of approximately
0.012 inch is recommended for this type of welding since such a beam
is more easily controlled and requires less total beam power to achieve
the same penetration. The standard practice of requiring clean parts

and good fit is essential to electron beam welding.
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FIG. 3-12 RHENIUM SHEET TO RHENIUM SHEET ELECTRON BEAM
WELD. BEAM VOLTAGE OF 150 kV X CURRENT OF
3.4 mA. PART SPEED OF 100 IN/MIN. (X75)

FIG. 3-13 RHENIUM SHEET TO RHENIUM SHEET ELECTRON-BEAM
WELD. BEAM VOLTAGE OF 150 kV X CURRENT OF
3.4 mA. PART SPEED OF 90 IN/MIN. (X75)
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FIG. 3-14

RHENIUM SHEET TO RHENIUM SHEET
ELECTRON-BEAM WELD. BEAM VOLTAGE
OF 150 kV X CURRENT OF 4.7 mA.
PART SPEED OF 80 LN/MIN.

FIG. 3-15

RHENIUM SHEET TO RHENIUM SHEET
ELECTRON-BEAM WELD BEAM VOLTAGE
OF 150 kV X CURRENT OF 6 mA.

PART SPEED OF 80 IN/MIN.
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3.2.4 Interelectrode Spacing Experiments

A thermal mockup of a converter was fabricated to
directly measure the at-temperature interelectrode spacing of a
thermionic converter.

The following paragraphs describe the interelectrode
rehicle and show experimental results and theoretical calcula-
tions. Spacing information from the test vehicle is correlated to
converter fabrication techniques.

3.2.4.1 Theoretical Calculations of the Converter
Thermal Mockup

Figure 3-16 is a cross section of the inter-
electrode spacing vehicle thermal mockup. The emitter heat choke was
machined to give a L/A ratio similar to that of a converter. It has

a 0.003-inch-thick wall for a length of 0.200 inch.

L/A = 0.200 x 2.54 .
3.14 x 0.633 x 3 x 6.45 x 10
5.08 x 107
L/A = _;___5___:5
3.85 x 10
-1
L/A = 13.2 cm

To minimize the cost of the emitter heat choke it was made of tantalum
rather than rhenium. The thermal expansion characteristics of tanta-
lum are very similar to rhenium over the temperature range from O to
1000°C, the limit of literature data.

To calculate the interelectrode spacing, a
temperature distribution of the emitter heat choke was taken. Figure
3-17 shows the temperature distribution of the envelope. The inter-
electrode spacing is the expansion of the emitter envelope plus the
expansion of the seal minus the collector expansion. Assuming that

the emitter at room temperature is stress-free, the thermal expansion
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of the emitter envelope can be calculated using a piecewise solution.
It is felt that a piecewise solution is valid becausc a sufficient
number of pieces (seven) will be taken. The expansion is Al = 1O o AT,
where Al is the change in length, 10 is the initial length at room
temperature, ¢ is the coefficient of thermal expansion of tantalum
(Ref. 8) and AT is the change in temperature.

The total expansion of the envelope is a

summation of the smaller members.

Al = ,,\11 + ,\12 + A,i,j + . 44 + oememe~ ,\L7
A _ . -4 -4
gll = 01.7 inches x 1.27 x 10 = 2.06 x 10
_ . -4 -4
Alz = 01.9 inches x 1.16 x 10 = 2,20 x 10
_ . -4 -4
[ﬂ3 = 01.9 inches x 1.10 x 10 = 2.09 x 10
. -4 -4
AJA = 01.7 inches x 1.06 x 10 = 1.80 x 10
) -4 -4
AJS = 02,0 inches x 1.01 x 10 = 2,02 x 10
. A -4
Al6 = 01.9 inches x 0.96 x 10 = 1.82 x 10
-4 6.30 x 10°%
AL, = 09.0 inches x 0.7 x 107" = —==—F——p
18.29 x 10

Therefore, the calculated change in the emitter envelope is 0.00183
inch.

Likewise, the thermal expansion of the seal
assembly can also be calculated. Assuming that the ceramic member has
the same coefficient of thermal expansion as the niocbium metal member
(Ref. 8), with an average seal temperaturc of 65000, the ¢ of niobium
is 0.51 x 1072°C71; for -: 0.50 inch we have

>

0.50 inch x 0.51 x 10'2 = 0.0026 inch

Therefore, the seal expansion is 0.0026 inch.
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The molybdenum collector expansion for a
collector measuring length (10) of 0.650 inch, assuming an average
collector temperature of 7000C, is ALC = 0.650 inch x 0.35 x 10-2 =
0.00228 inch. Therefore, the calculated change in the interelectrode
spacing is: Af = (0.00183 inch + 0.0026 inch) - 0.00228 inch = 0.00215
inch with an operating temperature of 1735°C on the emitter, an average
collector temperature of 7000C, and a seal temperature of 650°C.

3.2.4.2 Direct Experimental Measurement of
Interelectrode Spacing

Direct measurements of the interelectrode
spacing were made by optically measuring the gap distance at tempera-
ture by sighting through a 0.038-inch-diameter hole which was drilled
in the side of the emitter envelope assembly.

Figure 3-18 shows the testing setup. A
self-contained 40-liter/second vacuum ion pump was used to minimize
floor vibrations. Precision optical measurements are taken through an
optically flat quartz window in a quartz bell jar. The spacing was
directly measured by sighting through a Bausch and Lomb micrometer
drum cross-hair eyepiece mounted on a 75 power microscope. The micro-
meter drum was calibrated against a ruled micrometer stage (Bausch and
Lomb 31-16-89). The established accuracy of this optical system is
£ 0.0001 inch. The emitter temperature of the converter mockup was
varied from 12500C to 1800°C with an electron bombardment heater. The
tantalum emitter has a 10:1 depth-to-diameter hohlraum for micro-
optical pyrometer temperature measurements.

The seal and envelope were fabricated as an
assembly«and electron beam welded to the collector.

The molybdenum collector was bored to accom-
modate an immersion thermocouple. Tantalum-sheathed heaters were
brazed to the collector root. The heaters allow the average collector
temperat;re to be varied in order to allow the determination of the

effects of collector temperature on the interelectrode spacing.
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FIG. 3-18 SPACING EXPERIMENT SETUP. DNote high-quality
quartz window for optical measurements
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The emitter collector spacing was set at
0.003 inch when fabricated. This spacing insures that the emitter
envelope is in a stress-free state at room temperature.

Distances between the emitter and collector
were measured by focusing on the selected electrode and aligning the
cross~hair of the micrometer drum at the surface of that electrode;
the cross-hair was then moved, counting the number of drum revolutionms,
until it was aligned with the surface of the other electrode. This
procedurc was then reversed. At least six readings were taken for
each set of parameters.

Dircct optical determination of the spacing
yielded variations up to 0.0002 inch [rom reading to reading. The
variation in the recadings is dependent upon the ability to precisely
focus on the electrode faces when they are at temperature. Figure 3-19
shows a typical temperature picture of the gap region looking through
the microscope. (The cross-hairs in the picture are out of focus to
accommodate the camera.) ;

Figure 3-20 shows the change in interelec-
trode spacing for various cmitter temperatures, and seal temperatures
of 608°C and 650°C. The calculated change in interelectrode spacing
of 0.00215 inch and the experimentally measured spacing changes of

0.0023 inch at T = 1735, T_ = 700°C, T_ | = 650°C show

emitter oll. al

close agreement.
Calculated valucs for the spacing change
cannot be more accurate than % 5 percent, because the best published
data available for the coecfficient of thermal expansion (o) vary by
this amount. For cxample, 99.90 percent purc niobium has an o of
3.03 x 10-6/OC, and 99.92 percent pure niobium has an ¢ of 8.45 x 10-6/OC
(Ref. 10). This variation in 5 is duc to differcences in the purity of
the material involved. As a rule, the higher the purity of a particu-

lar material the larger its thermal expansion (o).
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COLLECTOR

INTERELECTRODE
SPACING

EMITTER

FIG. 3-19 PHOTOGRAPH OF INTERELECTRODE SPACING AT AN
EMITTER TEMPERATURE OF 1735°C
= 0o J
TCOLLECTOR 700°C INTERELECTRODE SPACING
MEASURED TO BE 5.6 MILS
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3.2.4.3 Problems in Achieving Precision Interelectrode
Spacing in Thermionic Converter Hardware

In converter operation, a large AT is present
in the collector due to the thermal load caused by the converter
current. This AT must be considered when correlating the spacing data
obtained from the interelectrode spacing device with an operating con-
verter. With a 50 ampere converter current and a 1.88 cm2 collector
cross-sectional area, the AT in the molybdenum collector is 110°c. At
70 amperes of converter current, the collector AT is 150°¢.

When fabricating a converker, the ability to
achieve an operating spacing that is accurate to £ 0.0001 inch is
decidedly a function of the fabrication processes such as machine
tolerances, annealing, electron beam welding, and brazing.

The final fabrication procedure entails

electron~beam welding the emitter on the rest of the converter as the

final subassembly step. This insures not only the desired spacing but

also eliminates stress in the metal-to-ceramic seal. If the emitter-

envelope subassembly is seal-brazed to the collector subassembly as
the final fabrication process, the spacing at operating temperature
will be determined by variable brazing temperatures, variable braze
run-out, and the annealing state of flange materials. Also, if the
emitter and collector surfaces are in contact, the seal braze is made
in compression and stresses are induced in the seal and envelope.

A recalistic tolerance for practical converter

interelectrode spacings should be £ 0.0002 inch.
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4. HIGH PERFORMANCE THERMIONIC CONVERTER DESIdN

The thermionic converter design goals for this program are:

1. A power density of 20 watts/cm2 at 0.8 volt terminal output
from a 2.0 cm2 emitter area. The emitter temperature for
this output is 1735°¢C true, as measured in a 10:1 depth-to-
diameter blackbody hole with corrections for bell jar trans-
mission loss.

2. An efficiency of 14 percent, measured at the conditions of
output power density just described, using a flat, counter-
wound, 0.020-inch-diameter tungsten filament.

3. Minimum converter weight consistent with a four-converter
generator weighing 4 pounds.

4. Improved heat transfer from the converter collector surface
to the radiator and sufficient radiator area to reject the
generated heat loads during dc operation of the converter.

The design and fabrication of the converters proceeded in an
iterative fashion wherein each converter is designed utilizing opera-
tional information from previous converters, the variable-parameter
vehicle data, and the secondary experiments.

In 1964 EOS thermionic converters achieved 20 watts/cm2 at 0.7
volt terminal output for an emitter temperature of 2000°K true. The
emitter was 0.020-in. rhenium shim hot-pressed onto a tantalum sub-
strate, a system that, a priori, is life-limited by the basic incom-
patibility of tantalum-rhenium at 2000°K. The useful life of this
type of converter was at that time estimated to be: (1) a few hundred
hours before some initial degradation due to emitter surface contami-
nation, and (2) final catastrophic failure of the tantalum-rhenium

bond after 1000 to 3000 hours of operation. Upon extended test these
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| predictions were proven correct; moreover, the recommendations for a
‘J’— .
solid rhenium emitter supported by a rhenium envelope for reliable,

long-life operation was adopted.

4.1 Converter Efficiency

The efficiency of a thermionic converter is calculated by

way of standard considerations in the following manner:

o= -
' Pout/Pelec cool + Prad + Pcs cond + Penv cond (4-1)

is set at 20 watts/cm2 from 2 cmz, P is the
ut elec cool

thermal power carried away from the emitter by electrons 'evaporating"
P y y P g

where P
0

from the emitter surface, Prad is the net heat lost from the emitter

surface by radiation, P is the net thermal '"gas' conduction
y g

cs cond

loss from the emitter surface, and P is the conduction heat
env cond

transferred from the emitter to its envelope support structure.

Each of the loss terms is now examined at the power output

design point.

Pelec cool 1 (¢eff + 2kT/e) (4-2)
where ¢eff is the effective emitter work function obtained from the
Richardson-Dushman equation by setting A, the preexponential multi-
plier, equal to 120 amperes/cm2 - OKZ; T, the emitter temperature, at

ZOOOOK; and JS, the saturated electron emission, at 25 amps/cm2

? -e¢/kT
J = A Te
s
:
|
-12
25 amps _ 120 amps 6 0,2 1.6 x 10 Ooff 43
5 = > 5 2 X 4 x 107 — K'xe - 16 3 4-3)
cm cm — K 1.38 x 10 x 2 x 10
solving for ¢eff’
¢eff = 2.9 volts
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The term 2kT/e is an additive energy term, divided by the electron
charge for conversion to units of potential energy, which accounts for
the energy distribution of emitted electrons. For an emitter tempera-
ture, T, of 2000°K this additive term is equal to 0.32 volt,

The total electron cooling loss for 2.0 cm2 of emitting

area with a 50-ampere current is:

P = 50 (2.9 + 0.32) = 160 watts
“elec cool
= ~ (/ ‘L’* - 4 '
Prad eeff “\1em Tcoll/

where eoff is the effective emissivity of the electrode system which,

in Section 3, was determined to be 0.16.

, 4 %
/

\ 1
\2 x 103 - \1.1 x 10

P = 0.16 x 5.7 x 10" 1% «
rad

r——

2
P = 13 watts/cm
rad

2 : .

For 2.0 em, the heat loss from the emitter surface is 26 watts.

The power loss via cesium conduction loss has been experi-
mentally reported to be approximately 16 watts in the cesium pressure
range of interest (i.e., from 2 to 10 torr).

The final loss term to be considered is the envelope conduc-

tion, P The design of the envelope, which acts as the

env cond’
emitter support structure as well as the emitter current lead strap,
requires a tradeoff between the electrical losses and thermal losses.
The usual lead analysis, which follows, derives an L/A ratio for the
envelope which is obtained by examining the ratio of electrical to

thermal losses. Let &« be defined as the ratio of electrical to

thermal loss:

12 £ L/A
2 LY

- AN _
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The thermal loss term in the denominator is the sum of the
simple heat conduction minus half the joule heating losses since the
joule heating losses will modify the envelope temperature distribution

in a manner which will reduce the straight conduction loss. For an &

value of 0.1, the L/A ratio for a rhenium envelope with ¢ = 80 x lO-6
ohm-cm, K = 0.48 watt/cm - OC, I = 50 amperes, and Al = lOOOOC is:
L/A = %6 0.4?6x 0.1 x 1000
80 x 10 1+ 1/2 (0.1) ]
-1
L/A = 15 cm

From a fabrication standpoint, an envelope wall thickness
of less than 0.003 inch is difficult to produce with a high yield.
Therefore, a minimum wall dimension of 0.004 inch has been selected,
and the resultant length, L, is approximately 0.22 inch for an
envelope diameter of 0.631 inch. The electrical loss 12 o L/A, by
substitution, is (50)% x 80 x 10"® ohm-cm x 15 em™ ! = 3 watts, while

the thermal loss, or P is 30 watts.

env cond’
Returning to the efficiency expression, Ti may be written as:

M = 40 watts
160 watts + 26 watts + 16 watts + 30 watts

i = 17 percent

which compares to the program goal of 14 percent with bombardment gun
losses.

An EOS converter, fabricated and tested on Contract JPL
950699, which had a power output density of 20 watts/cm2 at a terminal
voltage of 0.7 Vdc, yielded an efficiency of 11 percent when measured
according to the methods defined in the present program design goals.
However, the converter current level on that particular test was

higher since the power output was obtained at an output voltage of
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0.7 Vdc instead of 0.8 Vdc. For 0.8 Vdc output at 20 watts/cmZ- and at
an emitter temperature of 17350C, the projected test efficiency would

have been 13.8 or 14 percent, measured.

4.2 Definition of Emitter Area

The emitter area of a plane-parallel, thermionic converter
has lacked universal definition for some time. For example, some con-
verters are assigned an emitter area based only on the area of the col-
lector surface, other converters are assigned an area based on the entire
emitter area as supported by the internal diameter of the envelope. For
a selected level of power output from a converter, the coliector atea
definition yields 10 to 15 percent greater power density than the emit-
ting area definition. Although this difference in area definition
seems small, it is sufficient to reject or accept deliverable hardware.

A more serious problem in plane-parallel converters is side-
wall emission from the emitter support structure. There are two factors
that enter into sidewall emission: (1) the sidewall (or envelope) —
collector distance; and (2) the envelope temperature which implies suf-
ficient contact potential difference to generate voltage output. A side-
wall distance, as noted in Section 2, of 0,005 to 0.006 inch yields
as much power output as an interelectrode spacing of 0.002 inch provided
that the sidewall itself is at, or approximately at, the emitter tem-
perature. If the envelope heat choke section is positioned 0.100 to
0.125 inch below the emitter electron beam weld, as shown in Fig. 4-1,
the temperature of the envelope above the heat choke section will approxi-
mate the emitter temperature to within 50 to 70°%¢. However, if the envelope
heat choke section is positioned such that it forces a sharp temperature
gradient on the envelope opposing the collector, as shown in Fig. 4-2,
the emission collected by the collector is minimal, particularly if the
spacing between the envelope and collector is 0.010 to 0.012 inch. To
estimate the additional emitting aréa from the envelope sidewall
depicted in Fig. 4-1, assume that only one-fourth of the thick wall
envelope is at the emitter temperature. For an emitter of 0.631 inch

diameter (2.0 cmz), the surface area of the 0.03-inch length opposing
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the collector is 0.4 cmz. That is, a converter design which utilizes
sidewall emission but does not consider the sidewall area realizes a
20 percent "increase' in power output density. A 16.5 watt/cm2 con-
verter may therefore, be incorrectly referred to as a 20 watt/cm2
converter when sidewall emission area is neglected.

The quesiion may be put forward: Why not use sidewall
emission in a planar geometry? The answer is simply that there is no
increase in efficiency for the sidewall system. 1t has the same
losses as the emitter surface (to wit: electron cooling, radiation
heat transfer, etc.), and since the final criterion for a SET con-
verter (or any other converter) in a space power supply is power out-
put versus power input, there is no system advantage to sidewall emis-
sion that cannot be obtained by just adding more converters or the
same number of converters with a larger emitter area.

The EOS converter design is predicated to minimizing emitter
sidewall emission by employing the geometry shown in Fig. 4-2. Tempera-
ture measurements which have been obtained on the emitter support struc-
ture of EOS converters indicate that the sidewall temperature immedi-
ately opposite the collector is some 200 to 2500C lower than the emitter
temperature. Moreover, the spacing between collector and sidewall is
consistently 0.011 inch and concentric, a measurement taken before the
emitter is electron beam welded in place.

The emitter arca of all EOS converters, unless otherwise
specified, is taken as:

2
emitter = /47D
where D is the inside diamcter of the emitter support structure shown

in Fig. 4-2.

4.3 Collector-Radiator Structure

As a starting point in the collector-radiator design, it is

necessary to calculate the collector heat load that must be rejected
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at the dc design operating point of 50 amperes (i.e., 40 watts at
0.8 vdec). The following paragraphs contain these calculations and
reexamine the molybdenum-copper spade in terms of heat rejection per

unit weight.

4,3.1 Collector Heat Load

The collector heat load, Q, may be written as the

sum of three terms:

-5 L0 + 0 -
N Y¥el ht ' “rad *cs cond (4-5)

where Q is the heat generated by the drift current electrons in

el ht
transit from the plasma (a region of higher potential energy) to the
collector Fermi level ( a region of lower potential energy). In con-
cept, it is exactly opposite to the electron cooling term associated
with the emitter, wherein electrons are lifted from the emitter Fermi
level to the virtual emitter and remove heat from the emitter in the

process. The terms Qrad and Q are equivalent to those discussed

cs cond
in the analysis of heat lost from the emitter. We may write Qel he 28°
= ki 4-6
U1 ne , (4-6)

where 1 is the drift or output current and k is defined as the summa-
tion of the kinetic energy of the plasma electrons and the potential

energy fall represented by the effective work function of the collector.

0

4kT /;
k= Te + \®coll * Vs/ (4-7)

(A discussion of the origin and nature of the plasma potential energy
term is presented in Appendix B.) For an electron plasma temperature

of 6000%k

4kT -16
pl _ 4 x 1.38 x 10 x 6000 _ 0. 66V
T -12
mx 1.6 x 10
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The measured minimum work function of cesium on
rhenium has been determined to be 1.47 volts. Setting the collector

sheath at zero for optimized operation, k is determined as:

k

0.66V + 1.47V

ke = 2,13V

and

i

Q 2.13 (50 amps)

el ht

Qel ht 107 watts for 50 amperes current load

To operate at 70 amperes without conduction cooling, the radiator

would be required to reject a total heat load, Q, of
Q = (2.13) 70 watts + 26 watts + 10 watts

the latter two terms bei a
W m 1ng Qrad nd ch cond

Q = 190 watts

4.3.2 Radiator Heat Rejection

The molybdenum collector-copper radiator discussed
previously in Subsection 3.1.2 provided a full-scale test for rejec-
tion of the computed collector heat load of 200 watts. The results

of the testing program are repeated:

1. At a collector root temperature of 6000C, 200 to 225 thermal

watts were dissipated by radiation.

2. The structure was thermal-cycled (on-off) 350 times under
heat rejection loads of 200 to 225 watts. A AT of 5°¢C
across the molybdenum-copper interface was measured before
and after thermal cycling.

3. No deterioration of the Rokide coating was observed.
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The structure just described weighed 220 grams
compared to the all-molybdenum collector-radiator weight of 250 grams
which dissipated 125 watts thermal at lower power output. The molyb-
denum-copper system is, therefore, capable of rejecting twice the heat
load of the molybdenum system for the same weight. A total weight of
240 grams is estimated for the high performance converter, yielding

a specific power of 13 1b/kW(e).

4.4 Assembly Ticcedure

As a method of improving diode fabrication, the design of
the advanced prototype converters includes prefabrication of the ceramic-
metal seals, their pretest, and final assembly into the diode configu-
ration, utilizing electron-beam welding. Converters built previously
were dependent upon the ceramic-metal sealing operation as the final
assembly step. Two disadvantages resulted: First, a seal failure
generally rendered one subassembly, and perhaps two, useless with
minimal chance of recovery. Second, the vapor pressure of seal brazing
materials is often high enough at the melting point (1/2 micron for
copper) that the converter interior, including the electrodes, was
coated with several monolayers of contaminant materials.

Figure 4-3 is a layout of the principal subassemblies includ-
ing the prefabricated seal.

The collector-radiator subassembly is comprised of a molybdenum
collector barrel, OFHC copper radiator fins, a niobium welding ring, a
rhenium collector shim, and a tantalum reservoir. The rhenium shim is
vanadium-brazed to the collector barrel since the resultant bond is made
without the formation of a brittle intermetallic or low melting point
eutectic alloy. The other components are titanium-brazed. The niobium
welding ring is selected to provide a base material identical to that of
the sealing flanges to avoid the apparent incompatibility of a solid

solution of niobium and molybdenum formed during electron-beam welding.
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The emitter envelope subassembly is comprised of a
rhenium envelope, a niobium transition ring, and tantalum lead straps.
All parts are vanadium-brazed. The niobium transition ring contains
a 0.060-inch~thick lip section to which the upper flange of the pre-
fabricated seal is electron-beam welded.

The final assembly operation is the electron-beam
welding of the rhenium emitter to the envelope subassembly. The weld
schedule follows the parameters established from the secondary experi-
ments, that is, an electron-beam voltage of 150 kV at a current of
4.9 mA, with a part revolution speed of 40 rpm. Attaching the emitter
last has several advantages: (1) It allows for visual inspection of
the concentricity of the envelope and collector, (2) It permits a high
temperature emitter outgas and grain stabilization treatment independent
of the converter structure. In particular, the outgassed emitter impu-
rities will contaminate the collector surface and prevent an optimum
cesiated work function during converter operation, (3) It provides a
means of setting the interelectrode spacing to a predetermined value
by grinding or shaping the emitter before welding.

The final diode is depicted in Fig. 4-4. As noted,
only three electron-beam welds are necessary for assembly — two welds
at the flanges and one at the emitter. The exhaust tubulation is joined
to the diode assembly, and high purity cesium is distilled into the

converter.
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5. THERMIONIC CONVERTER PERFORMANCE

5.1 Methods of Measurement

5.1.1 Current-Voltage Data

EOS uses two methods of testing thermionic converters
and both methods yield equivalent data. The tirst method or technique,
involves the steady state, dc measurement of optimized converter current
and voltage from a simply instrumented circuit as shown in Fig. 5-1.
For ease of testing, the usual passive resistor is replaced by an elec-
tronic load that is capable of controlling either constant current or
voltage output from the converter. Emitter temperature is held con-
stant at 1735°K while the cesium reservoir temperature and collector
temperature are adjusted for maximum converter output at various speci-
fied voltage levels. To insure that the output -is stable, all element
temperatures are held constant for 10 to 15 minutes; the final current
and voltage are then recorded.

The second method of obtaining current-voltage data is
the impression of a 60 cycle voltage source upon a fixed converter
operating point. This has the effect of continuouély and rapidly chang--
ing the converter load line about the dc operating point. An oscillo-
scope of sufficient precision and stability may be employed to monitor
the sweep characteristic. The main advantage of this technique is that
an entire I-V characteristic may be photographed with all element tem-
peratures unchanged. Figure 5-2 shows the circuit for this type of
testing. Since there has been considerable controversy involved with
ac sweeping methods or the interpretation of ac sweep data, the follow-
ing discussion has been included. First, the sweep transformer should

have a low inductance, low impedance secondary capable of sustaining at
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least 400 amperes steady state. High inductance transformers often
lead to a voltage displacement or hysteresis in the characteristic
caused by high values of L dI/dt. Second, grounding problems should

be avoided by providing a common ground since oscilloscope grounds are

made by the neutral line in the three-wire electrical system servicing
the laboratory. On the other hand, the converter emitter is usually
tied to water-pipe ground. Therefore, a voltage difference of several
tenths of volts may exist between two reference points in the system.
Third, the oscilloscope must have a high degree of stability, such
that millivolt responses are displayed without drifting. If the
oscilloscope is accurately calibrated, its display will register the
true I-V characteristic for a fixed set of operating conditions. It
is true that an ac sweep superimposed on an operating converter will
cause the circuit dc meters to read a different value than the static
dc level, but this is to be expected since these meters generally
have rectifying junctions which will average out an ac signal. At
any rate, a useful technique that EOS employs is to double expose the
film on an oscillograph — the first exposure records the dc operating
level, the second records the ac sweep about the dc level and must
contain the original operating point if the element temperatures have
not changed.

In summary, there are advantages to both methods.
The dc yields unequivocal, acceptance-type data for hardware. On
the other hand, the ac sweep method is useful for diagnostic testing
where the effects of cesium pressure and collector temperature are
quickly required. Moreover, such important items as saturated elec-
tron emission, breakdown voltage, arc impedance, etc., are available
from an I-V sweep picture. The important point about sweep or dynamic
testing is that, if done properly, it gives absolute agreement with
the dc method. Any point on a sweep picture can be statically repro-

duced within test accuracy.
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5.1.2 Temperature Measurement

There are two types of temperature measuring instru-
ments involved with thermionic converter testing: .optical pyrometers
and thermocouples. The converter emitter temperature is measured by
sighting a micro-optical pyrometer in an 8:1 or 10:1 depth-to-diameter
hohlraum drilled parallel to the emitter surface. The position of the
hohlraum relative to the bombardment filament is such that radiation
or reflection from the filament does not affect the line-of-sight
pyrometer measurement. Micro-optical pyrometers with thin tilament
bulbs 1/3 to 1/6 the diameter of the hohlraum are used for convefter
testing at EOS, thus facilitating accurate temperature measurement.
These same pyrometers are calibrated each month against a standard
lamp certified by the National Bureau of Standards. Figure 5-3 is a
summary plot of a micro-pyrometer whose calibration data at six-month
intervals is plotted against an NBS standard. The variation of the
data is within 7°C over a two-year period of time.

Thermocouple measurements on a converter are made at
the cesium reservoir, the collector, the radiator, and the seals. All
thermocouples have wire material continuity from the temperature meas-
uring junction through the vacuum system and into the ice junction to
prevent erroneous emf generation. All thermocouples are made from the

same heat number as supplied by vendor source. The variation in

millivolt response from these couples is approximately #0.5 per cent as

determined by furnace calibration. Moreover, the couple response is
40,5 percent of the true temperature indicated by a secondary stand-

ard of platinum/platinum-10 percent rhodium,

5.2 Converter SN-101 (rhenium-rhenium)

Converter SN-101 was built to reproduce the performance from
the rhenium-rhenium variable parameter test vehicle. In particular,
it was desired to fabricate a hardware type converter with a wide

interelectrode spacing (0.0035 inch) to demonstrate 15.4 watts/cm2 at
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0.8 vdc and 21 watts/cm2 and 0.7 Vdc for an emitter temperature of
1735°C. 1In addition, SN-101 utilized advanced concepts of converter
design such as a solid rhenium emitter electron-beam welded to a
rhenium envelope for long-life operation and stable performance, pre-
fabricated seal assemblies for manufacturing reliability and ultraclean
assembly, and a vanadium-brazed rhenium cap on the collector for output
performance higher and more consistent than the rhenium-molybdenum
system of electrodes.

The emitter area of SN-101 is 2.0 cwm” as defincd by the
inside diameter of the emitter support structure or envelope. Side-
wall emission from the envelope is designed to be minimal since the
heat choke section commences 0.020 inch below the emitter weld and the
sidewall spacing is between 0.010 and 0.012 inch.

The paragraphs that follow discuss the electrode processing,
interelectrode spacing, optimized performance, and other data concern-

ing SN-101.

5.2.1 SN-101 Electrode Processing

The rhenium emitter for SN-101 was outgassed in a
vac-ion pumped chamber at 2450°C for 3 hours. The chamber pressure,
at outgassing temperature, was 2 x 10-7 torr. The heating was accom-
plished by electron bombardment from a counterwound rhenium filament.
The emitter was supported on a rhenium fixture to insure that no
materials interaction would contaminate the emitter. The temperature
measurement is probably accurate to within +25°C since ordinary pyrom-
eters and standard lamps rarely cover that range. As noted in Section 2,
a heat treatment of 2450°C for three hours was found to produce a suf-
ficiently stable emitting surface, i.e., absolutely no grain growth or
grain boundary movement for 100 hours of subsequent operation at 1735°C.

The collecting surface of SN-101 is a planar cap of
rhenium sheet vanadium-brazed at 1900°C for three minutes duration in

a 10-6 torr vacuum susceptor can environment. Since the collector
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surface temperature in an operating converter is generally 800 to
8500C, treatment at 1900°C insures a stable surface for subsequent
operation. Vanadium was selected as the braze material since the
available literature indicates no low melting point eutectic nor
brittle intermetallic formation. Metallurgical studies, at EOS, of

1.
il

17

Re-V bond indicated a hardness increase at the braze interface

rt
]

of only ten percent over that of rhenium. Also, no woids were
encountered in three separate cross sections of sample Re-V brazes,
although it should be mentioned that overbrazing does result in void

structure and significant increases in hardness at the braze interface.

5.2.2 SN-101 Interelectrode Spacing

It was established from the variable parameter test
vehicle that the maximum power output from a practical rhenium-rhenium
system at 0.8V output occurred at 3.5 mils spacing and SN-101 was de-
signed for this spacing. Furthermore, it was experimentally determined
in a mockup structure that with the emitter and collector in a stress-
free condition the converter structure, upon reaching operating tem-
perature, differentially expanded 1.8 mils. To obtain 3.5 mils in
SN-101 (the difference, 1.7 mils), four small flats were ground on the
rhenium surface at a height of 1.7 mils. That is, 99.5 percent of the
emitting area is 1.7 mils below the level of the flats; hence, the
emitter may be brought in contact with the collector at room tempera-
ture and electron-beam welded in place to insure parallelism. There-
fore, at temperature, 99.5 percent of the area emits at an interelectrode
spacing of 3.5 mils; the remaining 0.5 percent, the surface area of the

flats, emits at a spacing of 1.8 mils.

5.2.3 SN-101 Optimized dc Performance

Figure 5-4 is an optimized performance plot of the dc
output from converter SN~101 under the test conditions of: (1) an
emitter temperature of 1735°C (true) hohlraum temperature; (2) potential

voltage leads placed at the converter terminals, not electrodes; and

(3) all data points recorded under steady-state, dc conditions.
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Power output densities of 15.2 watt/cm2 at 0.8 vdc
and 21.0 watts/cm2 at 0.7 vdc were measured from SN-101. The 0.8 Vdc
data were less than the design goal; however, this was known as a
virtual fact before SN-101 was built, since the variable parameter test

vehicle measurements indicated that only interelectrode spacings of less

than 0.0003 inch yiP]ded anv

araater
Yy greatel

oo ] o]
performance than 15 watis/cm . The

1
tested efficiency of SN-101 operating at 15,2 watts/cm2 (0.8 Vdc) was
9 percent; however, the geometry of plane parallel converters is such
that the bombardment heating is quite inefficient,

SN-101 was continuously operated for 40 hours at
21 watts/cm2 (0.7 Vdc output) as an acceptance test per the work

statement. The output performance at all voltage output levels after

40 hours was identical to the initial data shown in Fig. 5-4.

5.2.4 SN-101 Miscellaneous Data

Converter SN-101 was the first EOS converter built
with a molybdenum-copper radiator; therefore, it was desirable to
compare the thermal performance from operating data to the original
design calculations. For a dc current load of 65 amperes, a temper-
ature difference from the collector surface to the collector root of
178°C was measured, as compared to a calculated AT of 165°C. It was
further noted that no radiator heat input was required to optimize
the output performance at 0.7V, nor was any artificial cooling of
the radiator, including oversize lead straps, needed. SN-101 operated,
therefore, in accord with the design calculations in Section 4.

Figure 5-5 is a performance plot of the electrode
potential from SN-101 with a reference line indicating the terminal
voltage output. Generally, these data are not useful from an appli-
cations standpoint, since the emitter support structure and emitter
lead strap are an integral part of a power generating device. However,
some investigators have recently reported converter performance using

electrode potential in lieu of terminal voltage output. One final
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precaution should be observed before comparing electrode potential per-
formance: The emitter temperature measurements must be true hohlraum
readings, and the emitter area must be carefully defined as discussed
in Section 4,

Saturated electron emission data were taken from the
emitter of SN-101 at an emitter temperature of 1735°%¢C (true) hohlraum
and 330°C cesium reservoir. A value of 28 amps/cm2 is reported. Bare
work function measurements were also performed on the SN-101 emitter.
The reduced data indicate a value of 4.80 to 4.85 eV for the polycrys-

talline rhenium surface.

5.3 Converter SN-102 (rhenium-rhenium)

5.3.1 Electrode Processing

The electrodes of SN-102 were processed in an identical
manner with those of SN-101; that is, the emitter was outgassed at 2450°¢C
for three hours and the rhenium collector cap was outgassed at 1900°C for

four minutes during the vanadium brazing operation.

5.3.2 SN-102 Interelectrode Spacing

The interelectrode spacing of SN-102 was set at about
0.0002 inch to achieve the program goal of 20 watts/cm2 at 0.8 Vdc output.
This spacing is almost impossible to reproduce from converter to converter
and was considered as a performance demonstration only.

The most convincing evidence for the minimal spacing of
SN-102 may be derived from the space-charge nature of its performance.
For example, Fig. 5-6a is an I-V characteristic from SN-102 for operation
at an emitter temperature of 1735°¢ (true) hohlraum and a cesium reser-
voir temperature of 350°C. Figure 5-6b is an I-V characteristic from
the rhenium-rhenium test vehicle at the same emitter temperature of 1735°C
(true hohlraum) and at a cesium reservoir temperature of 349°C. At these
operating conditions the interelectrode spacing of the test vehicle was
measured to be 0.0002 inch, with hiph precisioan 0.0001-inch indicators
which may be read to within 0.00005 inch. The similarity of the charac-
teristics shown in Figs. 5-6a and 5-6b for equivalent operating conditions
strongly suggests that the interelectrode spacing of SN-102 was nearly the

same as that of the test vehicle (i.e., 0.0002 inch).
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FIG. 5-6a  SN-102 CHARACTERISTIC AT 1735°C.
EMITTER TEMPERATURE, 349°C CESIUM
RESERVOIR TEMPERATURE AND COLLECTOR
ROOT TEMPERATURE AT 592°cC.

FIG. 5-6b RHENIUM-RHENIUM VARIABLE PARAMETER
TEST VEHICLE CHARACTERISTIC AT
1735°C EMITTER TEMPERATURE, 348°C
CESIUM RESERVOIR TEMPERATURE AND
COLLECTOR ROOT TEMPERATURE AT 6000°C
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At the uppermost portion of each characteristic curve,
the arc discharge is just starting. One fact is obvious: The shape
of the I-V curve in Fig. 5-6b ranging from 1.0V to 0.5V is not charac-
teristic of the thermionic arc mode operation.

An additional point of interest about the voltage
output ot SN-102 (for constant current) is: The voltage output always
increases with increasing collector temperature. This is an observa-
tion inconsistent with arc mode operation in a thermionic converter and
suggests that the spacing between electrodes is so minimal that increas-
ing the collector temperature by 50 to 70°C is sufficient to decrease
the interelectrode spacing and increase the voltage output for a given
space charge current in accordance with Child's Law. In one instance,
the collector temperature was increased too much and the converter
shorted internally between emitter and collector — further evidence
of the close-spaced nature of SN-102.

Finally, it was noted that upon startup operation of
SN-102, the electrodes did not open near ambient temperature but re-
quired excessive heat input resulting in emitter temperatures of 1200°¢
before electrode separation. The calculated interelectrode spacing
of SN-102, based on the methods described in Section 3, was approxi-
mately 0,0004 inch assuming that the stress-free condition of the

: o o
electrodes occurs at an emitter temperature of 1200 C rather than 20°C.

5.3.3 Converter SN-102 Performance

Figure 5-7 is a plot of the steady-state, dc perform-
ance from converter SN-102. The performance goal of 20 watts/cm2 at
0.8 Vdc is identified on the plot. The testing procedures for SN-102,
such as emitter temperature measurements, emitter area definition, and
potential lead placement, were identical to those for SN-101.

The general shape of the performance plot in Fig. 5-7
is considerably different from that of SN-101, SN-103, or any other

converter operating in the arc mode. For example, the power density
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. 2 .
output increases about 5 watts/cm” for 0.1 volt increments between
0.1V and 0.6V in an arc mode converter operating at an emitter temper-
o . . . .
ature of 2000 K. 1In Fig. 5-7, the increase is much less, amounting to

about 1 or 2 watts/cm2 between 0.6V and 0.9V,

5.4 Converter SN-103 (rhenium-molybdenum)

5.4.1 Electrode Processing

. . o
The rhenium emitter of $N-103 was outgassed at 2450°C

for three hours. The molybdenum collector was outgassed while titanium
brazing the reservoir tubulation into the cesium vapor channel in the

collector root (17000C for three minutes).

5.4.2 SN-103 Interelectrode Spacing

The interelectrode spacing of SN-103 was set in a
manner identical with SN-101, wherein four flats were ground on the
emitter face allowing for a stress-free expansion from ambient to

operating temperature of 3.5 mils.

5.4.3 Converter SN-103 Steady-State, Optimized Performance

Figure 5-8 is the initial performance plot of the
dc output from SN-103. The performance is identical to that of
SN-101, not only in terms of electrical output but also cesium
reservoir temperature. This would normally be an unexpected result
since the minimum work function of cesium on molybdenum is 1.55 eV as
compared with cesium on rhenium at 1.47 eV. And consequently, the
rhenium-molybdenum system of SN-103 should deliver less performance
than the rhenium-rhenium system of SN-101. However, it was surmised
that SN-103 displayed the same behavior as the rhenium-molybdenum test
vehicle; that is, the molybdenum collector had received an evaporated
layer of rhenium from the emitter during terminal exhaust and the per-
formance was characteristic of a rhenium-rhenium/molybdenum system
rather than just rhenium-molybdenum. After 31 hours of continuous

operation at 20 watts/cm2 (0.7 Vdc), a decrease in voltage output was
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observed. Continued operation resulted in further output loss, and in
addition it appeared that the conditions of cesium reservoir temperature
and collector temperature for maximum output (at a specified voltage)
had shifted. After 60 hours operation, the decrcase in output termi-
nated and stecady-state, nonvarying operation resumed. Figure 5-9 is

the performance plot for SN-103 after 60 hours of operation with the
original performance included for comparison, It may bc noted at once
that the loss in voltage output is constant and equivalent to the differ-
ence in work function values of cesium on molybdenum and cesium on
rhenium, namely 0,080 volt. To reestablish the original data of a pre-
sumed rhenium-rhenium/molybdenum system, the emitter temperature was
increased to 22000C, with the cesium reservoir heater secured for a
period of two hours. The estimated thickness of the rhenium coating on
the collector surface resulting from this high temperature operation is
six angstrom laycrs based on clementary considerations of weight loss

by evaporation. The low reservoir temperature of 197°C and an assumed
wider interelectrode spacing of 4 mils at the eclecvated emitter tempera-
ture of 2200°C results only in negligible attenuation to a simple

vacuum evaporation model.

The performance plot of SN-103 following the delib-
erate evaporation of rhenium from the emitter to the collector is
illustrated in Fig. 5-10 wherein the original data arc shown for
comparison. The identity of performance and the similarity of operat-
ing conditions (such as ccsium reservoir temperature and collector

surface temperature) are rcadily apparent.

5.5 Converter SN-104 (rhenium-molybdenum)

5.5.1 Elcctrode Processing

The clectrodes of SN-104 were processed in a mannei
identical with that of SN-103; namcly, the rhenium emitter was outgassed
. )
at 2450°C for three hours and the molybdenum collector was outgassed at

17000C for three minutes.,
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5.5.2 SN-104 Interelectrode Spacing

The interelectrode spacing of SN-104 was set in an
attempt to reproduce the spacing of SN-102. The space charge nature
of the I-V characteristics and the high emitter temperature at elec-
trode separation were quite similar to the behavior of SN-102. It
is estimated that the actual spacing was 0.0003 inch since the elec-
trodes separated at 1100°C emitter temperature during startup, 100°%¢

less than for SN-102.

5.5.3 Coaverter SN-104 Performance

Figure 5-11 is a plot of the steady-state, dc per-
formance from SN-104. The testing procedures for SN-104, such as
emitter temperature measurements, emitter area definition and poten-
tial lead placement, were identical with those of SN-101, SN-102, and

SN-103 and in accordance with the test procedures previously discussed.
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APPENDIX A
PROCEDURE FOR CHEMICAL CLEANING OF TANTALUM

I. DESCRIPTION
The following procedure describes a method for chemically cleaning

~~~~~

tantalum prior to vacuum vuigassing.

II. EQUIPMENT LIST
. Beakers of assorted sizes

. Hot plate
Ultrasonic cleaner (minimum of 60 watts average power)

Bunsen burner, stand, and hot pad

. Lint-free and sulfur-free paper

. Distilled water

. Ethyl alcohol (CZHSOH)

Hydrochloric acid (HC1), 37 percent

10. Chromic acid (saturated solution of chromium trioxide)

11. Sulfuric acid (HZSOA)’ 96 percent

1

2

3

4

5. Forceps of assorted sizes
6

7

8

9

12, Stirring rod
13. Graduate
14. Balance, triple beam T 0.1 gram

15. Glass storage container, 1 gallon
III. SAFETY PROCEDURE FOR PREPARATION OF CHROMIC ACID
All materials are corrosive. Avoid spilling. 1In case of spillage,

wash away immediately with large quantities of water.

Sulfuric acid releases a large amount of heat when mixed with water.

Therefore, use caution and follow instructions exactly. Add acid to water.

The following safety apparatus must be used while preparing the

solution:

PRAICEDING PAGE BLANK NOT FILMED.
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1. Rubber gloves
2. Goggles or face mask

3. Full length rubber or plastic apron

IV. PREPARATION OF SATURATED CHROMIC ACID

1. Materials
a. Chromium trioxide (chromic acid), solid, technical grade
b. Sulfuric acid, concentrated, 96 percent, ACS specification
c¢. Distilled water

2. Equipment
a. Graduate (1 liter)
b. Beaker (4 liters)
c. Stirring rod
d. Balance, triple beam, T 0.1 gram
e. Glass storage container, 1 gallon

3. Procedure

Measure 2 liters of distilled water into beaker.

b. Add chromium trioxide and stir until solution is saturated.
c. Slowly and while stirring, carefully add 1100 ml of con-

centrated sulfuric acid.

d. Store in glass bottle, label 'saturated chromic acid

solution."

NOTE
Solution should be discarded if it shows a greenish
cast. There may be legal restrictions on the dis-

posal of chromate solutions.

V. SAFETY PROCEDURES FOR CLEANING PROCESS
All materials are corrosive. Avoid spilling. In case of spillage,
wash away immediately with large quantities of water.

The following are mandatory while cleaning parts with acid solutions:

1. Rubber gloves
2. Goggles or face mask

3. Rubber or plastic apron

6952-Final 170




VI. CLEANING PROCEDURE

1. Materials

Ethyl alcohol (CZHSOH)

Hydrochloric acid (HCl), 37 percent

Chromic acid solution

Distilled water

Hot plate

Ultrasonic cleaner (minimum of 60 watts average power)
Lint-free and sulfur-free paper

Beakers of assorted sizes

2. Procedure

a.

6952-Final

Place part to be cleaned in beaker of ethyl alcohol. Place
beaker in ultrasonic cleaner. Clean for approximately

6C seconds.

Remove parts from ethyl alcohol - allow to dry.

Place parts in beaker of boiling hydrochloric acid for
approximately 30 secondse.

Remove from hydrochloric acid and rinse in beaker of
boiling,distilled water for approximately 2 minutes.
Remove from distilled water - allow to dry.

Dip in ethyl alcohol - remove and allow to dry.

Place parts in beaker of hot chromic acid (1100C).

Remove from chromic acid and rinse vigorously in large
beaker of cold, distilled water.

Rinse parts in boiling, distilled water for approximately
2 minutes.

Rinse parts in cold, distilled water for approximately

10 seconds.

Remove parts from distilled water - allow to dry.

Rinse parts in clean, ethyl alcohol - remove and dry with

hot air blast.
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m. Visually inspect each part for contamination such as
fingerprints, water stains, and discoloration. ZParts
must be free of any such contamination. PRESENCE OF ANY
CONTAMINANTS DICTATES THE NEED FOR AN ENTIRE REPROCESSING
OF THE AFFECTED PART.

n. Wrap parts in lint-free, sulfur-free paper.

o. Seal in polyethylene bag.
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APPENDIX B
DERIVATION OF COLLECTOR HEATING POWER

Plasma Electron Temperature in the Absence of a Collector Sheath

The plasma electron energy is the sum of the kinetic energy

imparted to the electrons as they leave the emitter surface and the

energy contributed by the emitter voltage fall. This is given by

Eeject + evsheath B Eplasma

(1)

2kTemitter v evsheath - Eplasma

The controversy in this approach lies solely in the evaluation

of the plasma energy. The mean electron energy, assuming a Maxwellian

distribution, is defined by

2
[ EdN, 7 1y dN_

() =2 -

o =3 (2)
J7oang J7an, 2
(o} o

where dNV is the Maxwellian distribution function for electrons with

velocity between v and v + d. This is given by

o, = () ()7 7 - ) o
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The energy associated with the electrons having the average

velocity 1is

(fm VdN;]z ‘

E=1/2M (v)° = 1/2M | © = AKL (4)

I an, "

| (

Whether Eq. 2 or 4 is the correct expression for the plasma

electron energy is the question. Now, the random plasma current

density is given by

n e {(v)
T

where n, is the electron density. Thus, Eq. 4 can be interpreted as
the energy associated with the random electrons in the plasma. Since
the random current densities exceed the drift current densities by
greater than a factor of 10, it would seem appropriate to utilize

Eq. 4 in evaluating the plasma electron temperature. Thus:

4kT
- - — Pplasma _
emitter K evsheath n 1'275kTp1asma (5)

2kT

The error in plasma temperature determination and thus collector

energy input can be as much as 20 percent, depending on which plasma
energy term (Eq. 2 or 4) is utilized.

Thus the heating power input to the collector is given by

2kTemitter A / AkTQlasma
P =JdA <¢c + e + Vsheath) - dA \oc + n /
(6)

6952-Final 174




where

:]-d = drift current density measured at the collector
A = collecting area
¢C = collector work function
Temitter = emitter temperature

VSheath = emitter sheath voltage

Plasma Electron Temperature with a Collector Sheath

In the case of a collector sheath, tq. 6 is mcdified by the addi-

tion of a term representing the collector sheath voltage. That is,

2kT
4 emitter )
='| —cmitrer +
P dA \¢c + e + Vsheath Vcollector ()

where V is the height of the collector sheath and the sign is
collector
positive for an accelerating sheath and negative for a retarding sheath.
' There is a fine point in the evaluation of Eq. 7 since, when the col-
lector sheath is retarding and the sign is negative, :rh will also
decrease due to the loss of less energetic electrons. This will occur
only in an "off" optimum mode of operation of a thermionic converter
when the collector temperature is not high enough to emit sufficient
electron density to equal the random plasma electrons impinging on the
collector. In an optimized thermionic converter, the collector is

analogous to an emitting probe that is matched to the plasma, i.e, the

back emission from the collector is exactly equal to the positive

x-directed random current. The positive x-direction is from the emit-
ter toward the collector. 1In this instance there will be no sheath

at the collector and a plasma-matched condition exists.
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